【題目】已知:a是最大的負整數(shù),b是最小的正整數(shù),且ca+b,請回答下列問題:

1)請直接寫出a,bc的值:a   ;b   ;c   ;

2a,b,c在數(shù)軸上所對應的點分別為A,B,C,請在如圖的數(shù)軸上表示出A,BC三點;

3)在(2)的情況下.點A,BC開始在數(shù)軸上運動,若點A,點C以每秒1個單位的速度向左運動,同時,點B以每秒5個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:ABBC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求出ABBC的值.

【答案】1)﹣1,1,0;(2)見解析;(3ABBC的值為1

【解析】

1)根據(jù)題意可得 2)在數(shù)軸上直接標出.(3)先求出AB,BC的值,再計算AB-BC的值,可得AB-BC的值是定值.

1)由題意可得a=﹣1,b1,c=﹣1+10

2

3)∵BC=(1+5t)﹣(0t)=1+6t,

AB=(1+5t)﹣(﹣1t)=2+6t

ABBC2+6t﹣(1+6t)=1,

ABBC的值不會隨著時間的變化而改變,ABBC的值為1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長10cm,寬8cm的長方形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).

1)要使無蓋長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?

2)如果把長方形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的長方形,然后折合成一個有蓋的長方體盒子,那么它的側(cè)面積(指的是高為剪去的正方形邊長的長方體的側(cè)面積)可以達到30cm2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場今年2月份的營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達到633.6萬元.求3月份到5月份營業(yè)額的月平均增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=120°,點EF分別在邊AB,BC上,將菱形沿EF折疊,點B恰好落在AD邊上的點G處,且EGAC,若CD=8,則FG的長為(

A. 6B. C. 8D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C0,2).

1)求拋物線的函數(shù)表達式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標;

3)如圖2,設(shè)點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【探索發(fā)現(xiàn)】

如圖,是一張直角三角形紙片,∠B=90°,小明想從中剪出一個以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線DEEF剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為   

【拓展應用】

如圖,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點QM在邊BC上,則矩形PQMN面積的最大值為   .(用含a,h的代數(shù)式表示)

【靈活應用】

如圖,有一塊缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.

【實際應用】

如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量AB=50cmBC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 完成下面的證明.

如圖,已知ABCDEF, 寫出∠A,∠C,AFC的關(guān)系并說明理由.

解:∠AFC= . 理由如下:

ABEF(已知),

∴∠A   (兩直線平行,內(nèi)錯角相等).

CDEF(已知),

∴∠C    .

∵∠AFC ,

∴∠AFC= (等量代換).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過B1,0),D2,5)兩點,與x軸另一交點為A,點H是線段AB上一動點,過點H的直線PQx軸,分別交直線AD、拋物線于點Q,P

1)求拋物線的解析式;

2)是否存在點P,使APB=90°,若存在,求出點P的橫坐標,若不存在,說明理由;

3)連接BQ,一動點M從點B出發(fā),沿線段BQ以每秒1個單位的速度運動到Q,再沿線段QD以每秒個單位的速度運動到D后停止,當點Q的坐標是多少時,點M在整個運動過程中用時t最少?

查看答案和解析>>

同步練習冊答案