若△ABC的三邊a、b、c滿足a2+b2+c2+338=10a+24b+26c,則此△為


  1. A.
    銳角三角形
  2. B.
    鈍角三角形
  3. C.
    直角三角形
  4. D.
    不能確定
C
分析:將a2+b2+c2=10a+24b+26c-338進行配方,求出a,b,c,根據(jù)勾股定理的逆定理判斷△ABC的形狀.
解答:△ABC是直角三角形.理由是:
∵a2+b2+c2=10a+24b+26c-338,∴(a-5)2+(b-12)2+(c-13)2=0,
∴a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13.
∵52+122=132,∴△ABC是直角三角形.故選C.
點評:本題考查了勾股定理逆定理的應用,是基礎知識,比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、若△ABC的三邊a,b,c滿足(a-b)(b-c)(c-a)=0,那么△ABC的形狀是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、當x=±1時,分式
x2-1
x+1
的值為零
B、若4x2+kx+9是一個完全平方式,則k的值一定為12
C、若8a4bm+2n÷6a2mb6的結果為常數(shù),則m=n=2
D、若△ABC的三邊abc滿足a4-b4-c2(a2-b2)=0,則△ABC是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、若△ABC的三邊a,b,c滿足a=5,b=12,c為奇數(shù),且a+b+c能被3整除,則c=
13
,△ABC是
直角
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、若△ABC的三邊長分別為a,b,c,則下列條件不能推出△ABC是直角三角形的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若△ABC的三邊長分別為a、b、c,且a2+2ab=c2+2bc,則△ABC是( 。

查看答案和解析>>

同步練習冊答案