【題目】如圖、圖、圖,在矩形中,是邊上的一點(diǎn),以為邊作平行四邊形,使點(diǎn)在的對邊上,
如圖,試說明:平行四邊形的面積與矩形的面積相等;
如圖,若平行四邊形是矩形,與交于點(diǎn),試說明:、、、四點(diǎn)在同一個(gè)圓上;
如圖,若,平行四邊形是正方形,且是的中點(diǎn),交于點(diǎn),連接,判斷以為直徑的圓與直線的位置關(guān)系,并說明理由.
【答案】(1)見解析;(2)見解析;(3)以為直徑的圓與直線相切,理由見解析.
【解析】
(1)作出AE邊上的高,分別得出長方形和平行四邊形的面積表達(dá)式,可得其結(jié)果相同,從而說明平行四邊形AEFG的面積與矩形ABCD的面積相等.
(2)先求出∠ADC=∠FEA=90°,再根據(jù)圓內(nèi)接四邊形的判定定理:“如果一個(gè)四邊形的一組對角互補(bǔ),那么這個(gè)四邊形內(nèi)接于圓”解答.
(3)過D作DH⊥AP于H,根據(jù)∠2+∠3=90°,∠1+∠2=90°,可得∠3=∠1,可求出△ADG∽△AEB;再根據(jù)D是FG的中點(diǎn)可求出其相似比為2,再由△ADG與△AEB相似可得其對應(yīng)邊成比例,可求出△ADG∽△AEB∽△APD;最后根據(jù)相似三角形的性質(zhì)可得AD是∠GAH的平分線,可求出DG=DH,故DG=DF,即可解答.
過點(diǎn)作垂直于點(diǎn);
,
,
,
所以,
所以,.
因?yàn)槠叫兴倪呅?/span>是矩形,四邊形也是矩形;
所以,
則,
所以、、、四點(diǎn)在同一個(gè)圓上.
相切.
過作于;
∵,,
∴,,
∴,
∵是的中點(diǎn),
∴,
在與中,;
∵,
∴,
∵,
∴,∴,即是的平分線,
∴,∵,,
∴以為直徑的圓與直線相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校八年級有800名學(xué)生,在體育中考前進(jìn)行一次排球模擬測試,從中隨機(jī)抽取部分學(xué)生,根據(jù)其測試成績制作了下面兩個(gè)統(tǒng)計(jì)圖,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次抽取到的學(xué)生人數(shù)為________,圖2中的值為_________.
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是__________,眾數(shù)是________,中位數(shù)是_________.
(3)根據(jù)樣本數(shù)據(jù),估計(jì)我校八年級模擬體測中得12分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長最大,求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)為(-3,4),作出點(diǎn)P關(guān)于x軸對稱的點(diǎn)P1,稱為第1次變換;再作出點(diǎn)P1關(guān)于y軸對稱的點(diǎn)P2,稱為第2次變換;再作點(diǎn)P2關(guān)于x軸對稱的點(diǎn)P3,稱為第3次變換,…,依次類推,則第2019次變換得到的點(diǎn)P2019的坐標(biāo)為 ____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O.AC=8cm,BD=6cm,點(diǎn)P為AC上一動(dòng)點(diǎn),點(diǎn)P以1cm/的速度從點(diǎn)A出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=_____s時(shí),△PAB為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為等腰三角形時(shí),t的取值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線y=x2+x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C,直線BE⊥BC與點(diǎn)B,與拋物線的另一交點(diǎn)為E.
(1)如圖1,求點(diǎn)E的坐標(biāo);
(2)如圖2,若點(diǎn)P為x軸下方拋物線上一動(dòng)點(diǎn),過P作PG⊥BE與點(diǎn)G,當(dāng)PG長度最大時(shí),在直線BE上找一點(diǎn)M,使得△APM的周長最小,并求出周長的最小值.
(3)如圖3,將△BOC在射線BE上,設(shè)平移后的三角形為△B′O′C′,B′在射線BE上,若直線B′C′分別與x軸、拋物線的對稱軸交于點(diǎn)R、T,當(dāng)△O′RT為等腰三角形時(shí),求R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過點(diǎn)B作BC∥x軸,交y軸于點(diǎn)C,且AC=AB.求:
(1)這個(gè)反比例函數(shù)的解析式;
(2)直線AB的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com