解:(1)∵點A的坐標為(-2,0),
∴△AOC沿x軸向右平移2個單位得到△OBD;
∴△AOC與△BOD關于y軸對稱;
∵△AOC為等邊三角形,
∴∠AOC=∠BOD=60°,
∴∠AOD=120°,
∴△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB.
(2)如圖,∵等邊△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB,
∴OA=OD,
∵∠AOC=∠BOD=60°,
∴∠DOC=60°,
即OE為等腰△AOD的頂角的平分線,
∴OE垂直平分AD,
∴∠AEO=90°.
故答案為2;y軸;120.
分析:(1)由點A的坐標為(-2,0),根據(jù)平移的性質(zhì)得到△AOC沿x軸向右平移2個單位得到△OBD,則△AOC與△BOD關于y軸對稱;根據(jù)等邊三角形的性質(zhì)得∠AOC=∠BOD=60°,則∠AOD=120°,根據(jù)旋轉(zhuǎn)的定義得△AOC繞原點O順時針旋轉(zhuǎn)120°得到△DOB;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE為等腰△AOD的頂角的平分線,根據(jù)等腰三角形的性質(zhì)得到OE垂直平分AD,則∠AEO=90°.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了等邊三角形的性質(zhì)、軸對稱的性質(zhì)以及平移的性質(zhì).