【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=5,AB=9.
(1)求:DE的長度;
(2)求證:BE⊥DF
【答案】(1)4;(2)見解析
【解析】
(1)由旋轉(zhuǎn)可得:AF=AE=5,AD=AB=9,即可求出DE;
(2)延長BE交DF于點G,由旋轉(zhuǎn)得:∠ADF=∠ABE,證出∠DGE=∠BAE=90°即可.
解:(1)∵△ADF旋轉(zhuǎn)一定角度后得到△ABE,
∴AF=AE=5,AD=AB=9,∠FAD=∠EAB=90°,∠ADF=∠ABE,
∴DE=AD﹣AE=9﹣5=4
(2)延長BE交DF于點G,
由旋轉(zhuǎn)得:∠ADF=∠ABE
∵∠AEB=∠DEG
∴∠ADF+∠DEG=∠ABE+∠AEB
∵∠BAE=90°
∴∠DGE=∠BAE=90°
∴BG⊥DF
即BE⊥DF
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x+6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB≌△POC?若存在,求出點P的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖像與x軸交于A,B兩點,B點坐標為(4,0),與y軸交于點C(0,4).點D為拋物線上一點
(1)求拋物線的解析式及A點坐標;
(2)若△BCD是以BC為直角邊的直角三角形時,求點D的坐標;
(3)若△BCD是銳角三角形,請直接寫出點D的橫坐標m的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將線段AB繞點A逆時針旋轉(zhuǎn)60°得到線段AC,繼續(xù)旋轉(zhuǎn)(0°<<120°)得到線段AD,連接CD.
(1)連接BD,如圖1,若=80°,則∠BDC的度數(shù)為 ;(直接寫出結(jié)果)
(2)如圖2,以AB為斜邊作直角三角形ABE,使得∠B=∠ACD,連接CE,DE.若∠CED=90°,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:①abc>0 ; ②2a﹣3b=0 ; ③b2﹣4ac>0;④a+b+c>0; ⑤4b<c.則其中結(jié)論正確的個數(shù)是( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)證明:不論取何值,該函數(shù)圖像與軸總有公共點;
(2)若該函數(shù)的圖像與軸交于點(0,3),求出頂點坐標并畫出該函數(shù)圖像;
(3)在(2)的條件下,觀察圖像,解答下列問題:
①不等式的的解集是 ;
②若一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是 ;
③若一元二次方程在的范圍內(nèi)有實數(shù)根,則的取
值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知和B點,點C是的中點,點P在x軸上,若以P、A、C為頂點的三角形與相似,那么點P的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件.
(1)若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?
(2)若該商場要每天盈利最大,每件襯衫應(yīng)降價多少元?盈利最大是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com