分析 (1)首先把點(diǎn)B的坐標(biāo)為(3,0)代入拋物線y=-x2+mx+3,利用待定系數(shù)法即可求得m的值,繼而求得拋物線的頂點(diǎn)坐標(biāo);
(2)首先連接BC交拋物線對(duì)稱軸l于點(diǎn)P,則此時(shí)PA+PC的值最小,然后利用待定系數(shù)法求得直線BC的解析式,繼而求得答案.
解答 解:(1)把點(diǎn)B的坐標(biāo)為(3,0)代入拋物線y=-x2+mx+3得:0=-32+3m+3,
解得:m=2,
∴y=-x2+2x+3=-(x-1)2+4,
∴頂點(diǎn)坐標(biāo)為:(1,4).
(2)連接BC交拋物線對(duì)稱軸l于點(diǎn)P,則此時(shí)PA+PC的值最小,
設(shè)直線BC的解析式為:y=kx+b,
∵點(diǎn)C(0,3),點(diǎn)B(3,0),
∴$\left\{\begin{array}{l}{0=3k+b}\\{3=b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$,
∴直線BC的解析式為:y=-x+3,
當(dāng)x=1時(shí),y=-1+3=2,
∴當(dāng)PA+PC的值最小時(shí),點(diǎn)P的坐標(biāo)為:(1,2).
點(diǎn)評(píng) 此題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求解析式以及距離最短問(wèn)題.注意找到點(diǎn)P的位置是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.845×1010元 | B. | 84.5×108元 | C. | 8.45×109元 | D. | 8.45×1010元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4S1 | B. | 4S2 | C. | 4S2+S3 | D. | 3S1+4S3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠EMB=∠END | B. | ∠BMN=∠MNC | C. | ∠CNH=∠BPG | D. | ∠DNG=∠AME |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-(x-$\frac{5}{2}$)2-$\frac{11}{4}$ | B. | y=-(x+$\frac{5}{2}$)2-$\frac{11}{4}$ | C. | y=-(x-$\frac{5}{2}$)2-$\frac{1}{4}$ | D. | y=-(x+$\frac{5}{2}$)2+$\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25 | B. | 40 | C. | 50 | D. | 55 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com