【題目】已知表示實數(shù)a,b的點在數(shù)軸上的位置如圖所示,下列結論錯誤的是( )
A. <1< B. 1<-a<b C. 1<<b D. -b<a<-1
【答案】A
【解析】
首先根據(jù)數(shù)軸的特征,判斷出a、-1、0、1、b的大小關系;然后根據(jù)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,逐一判斷每個選項的正確性即可.
根據(jù)實數(shù)a,b在數(shù)軸上的位置,可得a<-1<0<1<b,1<|a|<|b|,-b<a.
由圖可知,1<|a|<|b|,故選項A結論錯誤
∵|a|<|b|,a<-1,b>1,
∴1<-a<b,故選項B結論正確;
∵1<|a|<|b|,b>1
∴1<<b,故選項C結論正確;
∵1<|a|<|b|,b>1,a<-1,
∴-b<a<-1,選項D結論正確.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】細心觀察圖形,認真分析各式,然后解答問題.
OA22=()2+1=2,S1=;
OA32=12+()2=3,S2=;
OA42=12+()2=4,S3=;…
(1)請用含有n(n為正整數(shù))的等式表示上述變化規(guī)律:OAn2=________,Sn=________;
(2)若一個三角形的面積是2,計算說明它是第幾個三角形?
(3)求出S12+S22+S32+…+S92的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校有一塊三角形草坪,數(shù)學課外小組的同學測得其三邊的長分別為AB=200米,AC=160米,BC=120米.
(1)小明根據(jù)測量的數(shù)據(jù),猜想△ABC是直角三角形,請判斷他的猜想是否正確,并說明理由;
(2)若計劃修一條從點C到BA邊的小路CH,使CH⊥AB于點H,求小路CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個.
(1)∠B+∠BDC=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1B.2C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )
A. ∠1=∠2 B. ∠BMF=∠DNF
C. ∠AMQ=∠CNP D. ∠1=∠2,∠BMF=∠DNF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交拋物線 (x≥0)與 (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點為坐標原點,點 為第一象限內一點,點在軸正半軸上,且.
(1)求點的坐標;
(2)動點以每秒2個單位長度的速度,從點出發(fā),沿軸正半軸勻速運動,設點的運動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
(3)如圖2,在(2)的條件下,點坐標為,連接,過點作軸的垂線交于點,過點 作軸的平行線,在點的運動過程中,直線上是否存在一點,使是以為腰的等腰直角三角形?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請補全證明過程,并在括號里寫上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com