如圖,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在線段AB上取一點(diǎn)D,作DF⊥AB交AC于點(diǎn)F.現(xiàn)將△ADF沿DF折疊,使點(diǎn)A落在線段DB上,對應(yīng)點(diǎn)記為A1;AD的中點(diǎn)E的對應(yīng)點(diǎn)記為E1.若△E1FA1∽△E1BF,則AD=       .
3.2。
∵∠ACB=900,AB=10,BC=6,∴。
設(shè)AD=2x,
∵點(diǎn)E為AD的中點(diǎn),將△ADF沿DF折疊,點(diǎn)A對應(yīng)點(diǎn)記為A1,點(diǎn)E的對應(yīng)點(diǎn)為E1
∴AE=DE=DE1=A1E1=x。
∵DF⊥AB,∠ACB=900,∠A=∠A,∴△ABC∽△AFD。
∴AD:AC =DF:BC ,即2x:8 =DF:6 ,解得DF=1.5x。
在Rt△DE1F中,E1F2= DF2+DE12 =" 3.25" x 2
又∵BE1=AB-AE1=10-3x,△E1FA1∽△E1BF,∴E1F:A1E1 =BE1 :E1F ,即E1F2=A1E1•BE1。
,解得x="1.6" 或x=0(舍去)。
∴AD的長為2×1.6 =3.2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平行四邊形ABCD中,E在DC上,若DE:EC=1:2,則BF:BE=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E為OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則DF:FC=
A.1:4B.1:3C.2:3D.1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形一定相似的是
A.兩個矩形B.兩個等腰梯形
C.對應(yīng)邊成比例的兩個四邊形D.有一個內(nèi)角相等的菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn)。某數(shù)學(xué)興趣小組在進(jìn)行課題研究時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點(diǎn)D,請問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖(3),請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對角線AC、BD交于點(diǎn)F,延長AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC紙片上可按如圖所示方式剪出一正方體表面展開圖,直角三角形的兩直角邊與正方體展開圖左下角正方形的邊共線,斜邊恰好經(jīng)過兩個正方形的頂點(diǎn)。已知BC=24cm,則這個展開圖可折成的正方體的體積為(   ) 
A.64cm3B.27cm3C.9cm3D.8cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在比例尺為1∶4000000的中國地圖上,量得揚(yáng)州市與2008年奧運(yùn)會舉辦地北京市相距27厘米,那么揚(yáng)州市與北京市兩地實(shí)際相距               千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,AB=AC,. 過點(diǎn)A作BC的平行線與∠ABC的平分線交于點(diǎn)D,連接CD.
     
(1)求證:
(2)點(diǎn)為線段延長線上一點(diǎn),將射線GC繞著點(diǎn)G逆時針旋轉(zhuǎn),與射線BD交于點(diǎn)E.
①若,,如圖2所示,求證:;
②若,請直接寫出的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠ADE=∠B=∠ACD

(1)寫出圖中所有的相似三角形(每兩個三角形相似為一組,分組寫);
(2)選擇(1)中的一組給與證明.

查看答案和解析>>

同步練習(xí)冊答案