【題目】如圖,正方形ABCD中,E是BC上的一點(diǎn),連接AE,過B點(diǎn)作BH⊥AE,垂足為點(diǎn)H,延長BH交CD于點(diǎn)F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長是5,BE=2,求AF的長.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)正方形的性質(zhì)得AB=BC,再根據(jù)同角的余角相等得∠BAE=∠EBH,再利用“角角邊”證明△ABE≌△BCF,根據(jù)全等三角形的對(duì)應(yīng)邊相等得AE=BF;
(2)根據(jù)全等三角形的對(duì)應(yīng)邊相等得BE=CF,再利用勾股定理計(jì)算即可得出結(jié)論.
(1)∵四邊形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∴∠BAE+∠AEB=90°.
∵BH⊥AE,∴∠BHE=90°.
∴∠AEB+∠EBH=90°.
∴∠BAE=∠EBH.
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA).
∴AE=BF.
(2)由(1)得△ABE≌△BCF,
∴BE=CF.
∵正方形的邊長是5,BE=2,
∴DF=CD-CF=CD-BE=5-2=3.
在Rt△ADF中,由勾股定理得:AF===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
(2)點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形△AMN?
(3)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AO=BO,直線MN經(jīng)過點(diǎn)O, 且AC⊥MN于C,BD⊥MN于D
(1) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖①的位置時(shí),求證:CD=AC+BD;
(2) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖②的位置時(shí),求證:CD=AC-BD;
(3) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖③的位置時(shí),試問:CD、AC、BD有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動(dòng)點(diǎn)P , Q分別從點(diǎn)B , D同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動(dòng),到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動(dòng),到點(diǎn)O停止1s后繼續(xù)運(yùn)動(dòng),到點(diǎn)B停止,連接AP , AQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)填空:AB=cm,AB與CD之間的距離為cm;
(2)當(dāng)4≤x≤10時(shí),求y與x之間的函數(shù)解析式;
(3)直接寫出在整個(gè)運(yùn)動(dòng)過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB的中點(diǎn),四邊形BCED為平行四邊形,DE,AC相交于F.連接DC,AE.
(1)試確定四邊形ADCE的形狀,并說明理由.
(2)若AB=16,AC=12,求四邊形ADCE的面積.
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形?請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=9,AB的垂直平分線交BC與點(diǎn)M,AC的垂直平分線交BC于點(diǎn)N,則△AMN的周長=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo).
(3)y= x2﹣x+3(公式法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABDE中,C是BD邊的中點(diǎn).
(1)如圖(1),若AC平分∠BAE,∠ACE=90°,則線段AE、AB、DE的長度滿足的數(shù)量關(guān)系為 ;(直接寫出答案)
(2)如圖(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,則線段AB、BD、DE、AE的長度滿足怎樣的數(shù)量關(guān)系?寫出結(jié)論并證明;
(3)如圖(3),BD=8,AB=2,DE=8,若ACE=135°,則線段AE長度的最大值是 (直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com