分析 (1)利用SAS證明△AFD和△BDC全等即可;
(2)利用全等三角形的性質得出FD=DC,即可判斷三角形的形狀;
解答 解:(1)∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,
在△FAD與△DBC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠FAD=∠DBC}\\{AF=BD}\end{array}\right.$,
∴△FAD≌△DBC(SAS);
(2)∵△FAD≌△DBC(SAS),
∴FD=DC,
∴△CDF是等腰三角形,
∵△FAD≌△DBC,
∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,
∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;
點評 此題考查了全等三角形的判定與性質的運用,等腰直角三角形的判定及性質的運用.解答時證明三角形全等是關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 8$\sqrt{6}$+24 | B. | 8$\sqrt{6}$+8 | C. | 24+8$\sqrt{3}$ | D. | 8+8$\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com