【題目】 如圖,已知等腰直角三角形,點是斜邊上一點(不與重合),是的外接圓⊙的直徑.
(1)求證:是等腰直角三角形;
(2)若⊙的直徑為2,求的值.
【答案】(1)證明見解析(2)4
【解析】
試題分析:(1)根據(jù)等腰直角三角形性質(zhì)得出∠C=∠ABC=∠PEA=45°,再由PE是⊙O的直徑,得出∠PAE=90°,∠PEA=∠APE=45°,從而得證.
(2)根據(jù)題意可知,AC=AB,AP=AE,再證△CPA≌△BAE,得出CP=BE,依勾股定理即可得證.
試題解析:(1)證明:∵△ABC是等腰直角三角形,
∴∠C=∠ABC=45°,
∴∠PEA=∠ABC=45°
又∵PE是⊙O的直徑,
∴∠PAE=90°,
∴∠PEA=∠APE=45°,
∴ △APE是等腰直角三角形.
(2)∵△ABC是等腰直角三角形,
∴AC=AB,
同理AP=AE,
又∵∠CAB=∠PAE=90°,
∴∠CAP=∠BAE,
∴△CPA≌△BAE,
∴CP=BE,
在Rt△BPE中,∠PBE=90°,PE=2,
∴PB2+BE2=PE2,
∴CP2+PB2=PE2=4.
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜薹共用去16萬元.
(1)求兩批次購進蒜薹各多少噸;
(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列判斷錯誤的是( )
A.兩組對邊分別相等的四邊形是平行四邊形
B.四個內(nèi)角都相等的四邊形是矩形
C.四條邊都相等的四邊形是菱形
D.兩條對角線垂直且平分的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個邊長不定的正方形,它的兩個相對的頂點分別在邊長為1的正六邊形一組平行的對邊上,另外兩個頂點在正六邊形內(nèi)部(包括邊界),則正方形邊長的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅家最近新蓋了房子,室內(nèi)裝修時,木工師傅讓小紅爸爸去建材市場買一塊長3m,寬2.2m的薄木板用來做家居面,到了市場爸爸看到滿足這個尺寸的木板有點大,買還是不買爸爸猶豫了,因為他知道他家門框高只有2m,寬只有1m,他不知道這塊木板買回家后能不能完整的通過自家門框.請你替小紅爸爸解決一下難題,幫他算一算要買的木板能否通過自家門框進入室內(nèi).(備用圖可供做題參考,薄木板厚度可以忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC,AD,AB于點E,O,F(xiàn),連接OC,OB,則圖中全等的三角形有( )
A.1對
B.2對
C.3對
D.4對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點分別為A(-2,3),B(-3,2),C(-1,1)
A2B2C2
(1)畫出△ABC關(guān)于y軸對稱的△ ;
(2)請在x軸上確定一點D,使點D到B、C的距離相等(要求用直尺和圓規(guī)作圖,并保留作圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com