【題目】如圖是我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”,圖中四個直角三角形是全等的,若大正方形ABCD的面積是小正方形EFGH面積的13倍,則的值為______________

【答案】

【解析】分析:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,則小正方形EFGH邊長是a,則大正方形ABCD的邊長是設(shè)AE=DH=x,根據(jù)Rt△AED的勾股定理得出x的值,從而得出比值.

詳解:設(shè)小正方形EFGH面積是a2,則大正方形ABCD的面積是13a2,

∴小正方形EFGH邊長是a,則大正方形ABCD的邊長是,

∵圖中的四個直角三角形是全等的, ∴AE=DH, 設(shè)AE=DH=x,

Rt△AED中,AD2=AE2+DE2, ,解得:x1=2a,x2=-3a(舍去),

∴AE=2a,DE=3a, ∴tan∠ADE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD紙對折,設(shè)折痕為MN,再把B點(diǎn)疊在折痕線MN上,(如圖點(diǎn)B’),若,則折痕AE的長為( )

A. B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形中,,,,點(diǎn)從點(diǎn)開始沿邊向終點(diǎn)以每秒的速度移動,點(diǎn)從點(diǎn)開始沿邊向終點(diǎn)以每秒的速度移動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時運(yùn)動停止,設(shè)運(yùn)動時間為秒.

(1)求證:當(dāng)時,四邊形是平行四邊形;

(2)當(dāng)為何值時,線段平分對角線?并求出此時四邊形的周長;

(3)當(dāng)為何值時,點(diǎn)恰好在的垂直平分線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實(shí)踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進(jìn)價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與y軸的正半軸交于點(diǎn)A,其頂點(diǎn)B在軸的負(fù)半軸上,且OA=OB,對于下列結(jié)論:①≥0;②;③關(guān)于的方程無實(shí)數(shù)根;④的最小值為3.其中正確結(jié)論的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)在某超市同時購買A,B兩種商品共三次,僅有第一次超市將A,B兩種商品同時按折價格出售,其余兩次均按標(biāo)價出售. 小強(qiáng)三次購買A,B商品的數(shù)量和費(fèi)用如下表所示:

A商品的數(shù)量(個)

B商品的數(shù)量(個)

購買總費(fèi)用(元)

第一次購買

8

6

930

第二次購買

6

5

980

第三次購買

3

8

1040

(1)求 A,B商品的標(biāo)價;

(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有兩個不相等的實(shí)數(shù)根.

求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使方程的兩個實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過點(diǎn)CCFDEF,過點(diǎn)AAGCFDE于點(diǎn)G

1)求證:DCF≌△ADG

2)若點(diǎn)EAB的中點(diǎn),設(shè)DCF=α,求sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個正方形A1B1C1D1,再順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個正方形A2B2C2D2…,以此類推,則第2018個正方形A2018B2018C2018D2018的周長是_____

查看答案和解析>>

同步練習(xí)冊答案