已知二次函數(shù)y=ax2-5x+c的圖象如圖所示,請根據(jù)圖象回答下列問題:
(1) a=_______,c=______.
(2)函數(shù)圖象的對稱軸是_________,頂點(diǎn)坐標(biāo)P__________.
(3)該函數(shù)有最______值,當(dāng)x=______時(shí),y最值=________.
(4)當(dāng)x_____時(shí),y隨x的增大而減小.當(dāng)x_____時(shí),y隨x的增大而增大.
(5)拋物線與x軸交點(diǎn)坐標(biāo)A_______,B________;與y軸交點(diǎn)C 的坐標(biāo)為_______;=_________,
=________.
(6)當(dāng)y>0時(shí),x的取值范圍是_________;當(dāng)y<0時(shí),x的取值范圍是_________.
(7)方程ax2-5x+c=0中△的符號為________.方程ax2-5x+c=0的兩根分別為_____,____.
(8)當(dāng)x=6時(shí),y______0;當(dāng)x=-2時(shí),y______0.
(1)a=1;c=4 (2)直線x=,
(3)小;
;
(4)
(5)(1,0);(4,0);(0,4); 6;
; (6)x<1或x>4;1<x<4
(7)正號;x1=1;x2=4 (8)>;>
【解析】本題全面考查了二次函數(shù)的性質(zhì)
根據(jù)函數(shù)圖象可知,拋物線與x軸交于A、B兩點(diǎn),將兩點(diǎn)代入函數(shù)求得解析式,再根據(jù)函數(shù)的性質(zhì)將各小題補(bǔ)充完整.
解:(1)由A(1,0)、B(4,0)代入函數(shù)可解得:a=1,c=4;
(2)將解得的函數(shù)y=x2-5x+4變形得:y=(x-)2-
,則對稱軸x=
,頂點(diǎn)坐標(biāo)(
,-
);
(3)小、、-
;
(4)≤、≥
;
(5)(1,0)、(4,0)、(0,4)、6、
(6)x<1或x>4、1<x<4;
(7)正號、x1=1、x2=4;
(8)>、>.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.
(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是( )
A.a>0 B.3是方程ax²+bx+c=0的一個(gè)根
C.a+b+c=0 D.當(dāng)x<1時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯(cuò)誤的是:
(A)圖像關(guān)于直線x=1對稱
(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4
(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根
(D)當(dāng)x<1時(shí),y隨x的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com