【題目】已知:如圖,在RtABC中,∠ACB90°,ACBC,點DBC的中點,CEAD,垂足為點E,BFACCE的延長線于點F

求證:AC2BF

【答案】見解析;

【解析】

由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到∠F=∠ADC,再由一對直角相等,ACBC,利用AAS得到三角形ACD與三角形CBF全等,利用全等三角形的對應邊相等得到CDBF,由DBC中點,得到CDBD,等量代換即可得證.

證明:∵RtACD中,∠ACB90°BFAC

∴∠ACB=CBF=90°

∵∠ACB90°,CEAD,

∴∠BCF+F90°,∠BCF+ADC90°

∴∠F=∠ADC,

ACDCBF中,

,

∴△ACD≌△CBFAAS),

CDBF,

DBC中點,

CDBD

BFCDBDBCAC,

AC2BF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點,連接AB',C'D,AD',BC',如圖②.

(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長為;
(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生會為了解本年級600名學生的睡眠情況,將同學們某天的睡眠時長t(小時)分為A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五個選項,進行了一次問卷調查,隨機抽取n名同學的調查問卷并進行了整理,繪制成如下條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解答下列問題:

(1)求n的值;
(2)根據(jù)統(tǒng)計結果,估計該年級600名學生中睡眠時長不足7小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒 個單位長度的速度運動,P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.

(1)求線段AQ的長;(用含t的代數(shù)式表示)
(2)連結PQ,當PQ與△ABC的一邊平行時,求t的值;
(3)如圖②,過點P作PE⊥AC于點E,以PE,EQ為鄰邊作矩形PEQF,點D為AC的中點,連結DF.設矩形PEQF與△ABC重疊部分圖形的面積為S.①當點Q在線段CD上運動時,求S與t之間的函數(shù)關系式;②直接寫出DF將矩形PEQF分成兩部分的面積比為1:2時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在ABC 中,AD平分∠BACAEBC,∠B=40°,∠C=70°.

(1)求∠DAE的度數(shù);

(2)如圖②,若把“AEBC”變成“點FDA的延長線上,FEBC”,其它條件不變,求∠DFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtABC中,C=90°,沿過B點的一條直線BE折疊這個三角形, 使C點與AB邊上的一點D重合.

(1)當A滿足什么條件時,點D恰為AB的中點?寫出一個你認為適當?shù)臈l件,并利用此條件證明DAB的中點;

(2)在(1)的條件下,若DE=1,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=30C為射線AB上一點,BCAC4倍少20,P,Q兩點分別從AB兩點同時出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運動,運動時間為t秒,MBP的中點,NQM的中點,以下結論:①BC=2AC;②運動過程中,QM的長度保持不變;③AB=4NQ;BQ=PB時,t=12,其中正確結論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織了一次防溺水、防交通事故、防食物中毒、防校園欺凌及其他各種安全意識的調查活動,了解同學們在哪些方面的安全意識薄弱,便于今后更好地開展安全教育活動.根據(jù)調查結果,繪制出圖1,圖2兩幅不完整的統(tǒng)計圖.
請結合圖中的信息解答下列問題:

(1)本次調查的人數(shù)為 , 其中防校園欺凌意識薄弱的人數(shù)占%;
(2)補全條形統(tǒng)計圖;
(3)若該校共有1500名學生,請估計該校學生中防溺水意識薄弱的人數(shù);
(4)請你根據(jù)題中的信息,給該校的安全教育提一個合理的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P點作PFADBC的延長線于點F,交AC于點H.(1)∠APB的度數(shù)為_______°;(2)求證:△ABP≌△FBP;(3)求證:AH+BD=AB.

查看答案和解析>>

同步練習冊答案