【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評估,游樂園決定對噴水設(shè)施做如下設(shè)計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.
【答案】(1)水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣(x﹣3)2+5(0<x<8);(2)為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內(nèi);(3)擴建改造后噴水池水柱的最大高度為米.
【解析】
(1)根據(jù)頂點坐標(biāo)可設(shè)二次函數(shù)的頂點式,代入點(8,0),求出a值,此題得解;
(2)利用二次函數(shù)圖象上點的坐標(biāo)特征,求出當(dāng)y=1.8時x的值,由此即可得出結(jié)論;
(3)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出拋物線與y軸的交點坐標(biāo),由拋物線的形狀不變可設(shè)改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+bx+,代入點(16,0)可求出b值,再利用配方法將二次函數(shù)表達(dá)式變形為頂點式,即可得出結(jié)論.
(1)設(shè)水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=a(x﹣3)2+5(a≠0),
將(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,
∴水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣(x﹣3)2+5(0<x<8).
(2)當(dāng)y=1.8時,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,
∴為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心7米以內(nèi).
(3)當(dāng)x=0時,y=﹣(x﹣3)2+5=.
設(shè)改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+bx+.
∵該函數(shù)圖象過點(16,0),
∴0=﹣×162+16b+,解得:b=3,
∴改造后水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式為y=﹣x2+3x+=﹣(x﹣)2+,
∴擴建改造后噴水池水柱的最大高度為米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,點C、D在上,且AD平分,過點D作AC的垂線,與AC的延長線相交于E,與AB的延長線相交于點F,G為AB的下半圓弧的中點,DG交AB于H,連接DB、GB.
證明EF是的切線;
求證:;
已知圓的半徑,,求GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售:①若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤為W內(nèi)(元);②若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費,月利潤為W外(元).
(1)若只在國內(nèi)銷售,當(dāng)x=1000(件)時,y= (元/件);
(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為一圓洞門.工匠在建造過程中需要一根橫梁AB和兩根對稱的立柱CE、DF來支撐,點A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.
(1)求出圓洞門⊙O的半徑;
(2)求立柱CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,D、E分別在邊AB、AC上,下列條件中,不能確定△ADE∽△ACB的是( 。
A. ∠AED=∠B B. ∠BDE+∠C=180°
C. ADBC=ACDE D. ADAB=AEAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).
(1)求點B的坐標(biāo);
(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達(dá)式;
(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點.
(1)求m的值;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點, 且y1>y2,求實數(shù)p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com