【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B,

(1)求拋物線(xiàn)的解析式;
(2)求P在第一象限的拋物線(xiàn)上,P點(diǎn)的橫坐標(biāo)為t,過(guò)點(diǎn)P向x軸做垂線(xiàn)交直線(xiàn)BC于點(diǎn)Q,設(shè)線(xiàn)段PQ的長(zhǎng)為m,求m與t之間的函數(shù)關(guān)系式并求出m的最大值;
(3)在(2)的條件下,拋物線(xiàn)上一點(diǎn)D的縱坐標(biāo)為m的最大值,連接BD,在拋物線(xiàn)是否存在點(diǎn)E(不與點(diǎn)A,B,C重合)使得∠DBE=45°?若不存在.請(qǐng)說(shuō)明理由;若存在請(qǐng)求E點(diǎn)的坐標(biāo).

【答案】
(1)

解:拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0)、C(0,4)兩點(diǎn),

解得

∴拋物線(xiàn)的解析式y(tǒng)=﹣x2+3x+4


(2)

解:令﹣x2+3x+4=0,

解得x1=﹣1,x2=4,

∴B(4,0)

設(shè)直線(xiàn)BC的解析式為y=kx+a

解得

∴直線(xiàn)BC的解析式為y=﹣x+4

設(shè)P點(diǎn)的坐標(biāo)為(t,﹣t2+3t+4),則Q點(diǎn)的坐標(biāo)為(t,﹣t+4)

∴m=(﹣t2+3t+4)﹣(﹣t+4)=﹣(t﹣2)2+4

整理得m=﹣(t﹣2)2+4,

∴當(dāng)t=2時(shí),m的最大值為4


(3)

解:存在

∵拋物線(xiàn)一點(diǎn)D的縱坐標(biāo)為m的最大值4,

∴﹣x2+3x+4=4,解得x1=0(舍),x2=3

∴D(3,4),CD=3

∵C(0,4),

∴CD∥x軸,

∵OC=OB=4,

∴△BOC為直角三角形,

過(guò)點(diǎn)D作DH⊥BC于H,過(guò)點(diǎn)E作EF⊥x于點(diǎn)F,在△CDB中,CD=3,∠DCB=45°

∴CH=DH= ,

∵CB=4 ,∴BH=CB﹣CH=

∵∠DBE=∠CBO=45°

∴∠DBE﹣∠CBE=∠CBO﹣∠CBE,

即∠DBC=∠EBF

∴tan∠DBC= = =

設(shè)EF=3a∴BF=5a

∴OF=5a﹣4

∴F(4﹣5a,0),E(4﹣5a,3a)

∵點(diǎn)E在拋物線(xiàn)上

∴3a=﹣(4﹣5a)2+3(4﹣5a)+4

解得a1=0 a2=

∴E(﹣ , ).


【解析】(1)把點(diǎn)A、B的坐標(biāo)代入拋物線(xiàn)解析式,解關(guān)于b、c的方程組求出b、c的值即可得到拋物線(xiàn)解析式,令y=0,解關(guān)于x的一元二次方程即可得到點(diǎn)C的坐標(biāo);(2)根據(jù)拋物線(xiàn)的解析式y(tǒng)=﹣x2+3x+4,令y=0求得點(diǎn)B的坐標(biāo)為(4.0),設(shè)直線(xiàn)BC的解析式為y=kx+a把點(diǎn)B、C的坐標(biāo)代入直線(xiàn)BC的解析式為y=kx+a,解關(guān)于k、a的方程組求出k、a的值,所以直線(xiàn)BC的解析式為y=﹣x+4,設(shè)P點(diǎn)的坐標(biāo)為(t,﹣t2+3t+4),則Q點(diǎn)的坐標(biāo)為(t,﹣t+4),所以m=(﹣t2+3t+4)﹣(﹣t+4),整理得m=﹣(t﹣2)2+4,根據(jù)關(guān)于m、t的二次函數(shù)即可求得.(3)根據(jù)m的最大值是4,代入y=﹣x2+3x+4,可求得D點(diǎn)的坐標(biāo)(3,4),過(guò)D點(diǎn)作DH⊥BC,過(guò)E點(diǎn)作EF⊥x軸,由OC=OB=4得△DCB為等腰直角三角形,從而得出△CDH為等腰直角三角形,通過(guò)等腰直角三角形求得CN、BH的值,然后根據(jù)三角形相似求得EF、BF的關(guān)系,設(shè)出E點(diǎn)的坐標(biāo),然后代入y=﹣x2+3x+4即可求得.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃撥款9萬(wàn)元從廠(chǎng)家購(gòu)進(jìn)50臺(tái)電視機(jī)已知該廠(chǎng)家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠(chǎng)價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元.

若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)研究一下商場(chǎng)的進(jìn)貨方案;

若商場(chǎng)銷(xiāo)售一臺(tái)甲種電視機(jī)可獲利150元,銷(xiāo)售一臺(tái)乙種電視機(jī)可獲利200元,銷(xiāo)售一臺(tái)丙種電視機(jī)可獲利250在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)電視機(jī)的方案中,為使銷(xiāo)售時(shí)獲利最多,你選擇哪種進(jìn)貨方案;

若商場(chǎng)準(zhǔn)備用9萬(wàn)元同時(shí)購(gòu)進(jìn)三種不同的電視機(jī)50臺(tái),請(qǐng)你設(shè)計(jì)進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點(diǎn)P從A點(diǎn)出發(fā),沿折線(xiàn)AB→BC→CD運(yùn)動(dòng),到點(diǎn)D時(shí)停止,已知△PAD的面積s與點(diǎn)P運(yùn)動(dòng)的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開(kāi)始到停止運(yùn)動(dòng)的總路程為( )

A.4
B.2+
C.5
D.4+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由半圓和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車(chē)道(共有2條車(chē)道),若現(xiàn)有一輛貨運(yùn)卡車(chē)高4m,寬2.3m。則這輛貨運(yùn)卡車(chē)能否通過(guò)該隧道?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E的坐標(biāo)為(4,0),頂點(diǎn)G的坐標(biāo)為(0,2),將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.

(1)求圖象經(jīng)過(guò)點(diǎn)A的反比例函數(shù)的解析式;
(2)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,直接寫(xiě)出直線(xiàn)AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線(xiàn)段BC長(zhǎng)度一半的長(zhǎng)為半徑畫(huà)弧,兩弧在直線(xiàn)BC上方的交點(diǎn)為P,直線(xiàn)PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ÷(a+2﹣ ),其中x2﹣2 x+a=0有兩個(gè)不相等的實(shí)數(shù)根,且a為非負(fù)整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥研究生開(kāi)發(fā)了一種新藥,在實(shí)驗(yàn)藥效時(shí)發(fā)現(xiàn),如果成人按規(guī)劑量服用,那么服用藥后2h時(shí)血液中含藥量最高,達(dá)每毫升6ug,接著逐步衰減,10h時(shí)血液中含藥量每毫升3ug,每毫升血液中含藥量y(ug)隨時(shí)間x(h)的變化如圖所示,當(dāng)成人按規(guī)定劑量服藥后.

1分別求出x≤2和x>2時(shí),y與x之間的函數(shù)關(guān)系式;

2如果每毫升血液含藥量為4ug或4ug以上時(shí)在治療疾病時(shí)是有效的,那么這個(gè)有效時(shí)間是多長(zhǎng)?每天至少吃幾次藥療效最好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了心系雅安捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列是問(wèn)題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值是 ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案