【題目】如圖, EF∥AD, AD∥BC, CE平分 , .求 的度數(shù).

【答案】解:∵AD∥BC,

∴∠DAC+∠ACB=180°,

∵∠DAC=120°,

∴∠ACB=60°,

∵∠ACF=20°,

∴∠BCF的=40°,

∵CE平分∠BCF,

∴∠BCE=∠ECF=20°,

∵EF∥AD,

∴EF∥BC,

∴∠FEC=∠BCE=20°.


【解析】根據(jù)AD∥BC,∠DAC+∠ACB=180°,再由∠DAC=120°,得出∠ACB=60°,由∠ACF=20°,得∠BCF的度數(shù),根據(jù)CE平分∠BCF,得∠BCE=∠ECF,因為EF∥AD,則EF∥BC,∠FEC=∠BCE,即可得出∠FEC=∠FCE.
【考點精析】本題主要考查了角的平分線和平行線的性質(zhì)的相關(guān)知識點,需要掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線BE上的一點,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點P為∠AOB的角平分線上的一定點,D是射線OA上的一定點,E是OB上的某一點,滿足PE=PD,則∠OEP與∠ODP的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點E,交BC于點D,CD=1,則BC的長為(

A.3
B.2+
C.2
D.1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0是一個(  )

A. 負整數(shù) B. 正分數(shù) C. 非負整數(shù) D. 正整數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上的一點,OC⊥OD,垂足為O.

(1)若∠BOD=32°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOD=2:1,直接寫出∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a+1|=-b-20192,則ab=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人要在規(guī)定的時間內(nèi)加工100個零件,則工作效率η與時間t之間的關(guān)系中,下列說法正確的是(
A.數(shù)100和η,t都是變量
B.數(shù)100和η都是常量
C.η和t是變量
D.數(shù)100和t都是常量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖線段AB=9,C、D、E分別為線段AB(端點A、B除外)上順次三個不同的點,圖中所有的線段和等于46,則下列結(jié)論一定成立的是(
A.CD=3
B.DE=2
C.CE=5
D.EB=5

查看答案和解析>>

同步練習(xí)冊答案