【題目】如圖,△ABC內接于⊙O,BC是⊙O的直徑,弦AF交BC于點E,延長BC到點D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求EF的長.

【答案】
(1)解:∵BC是⊙O的直徑,

∴∠BAF+∠FAC=90°,

∵∠D=∠BAF,∠AOD=∠FAC,

∴∠D+∠AOD=90°,

∴∠OAD=90°,

∴AD是⊙O的切線;


(2)解:連接BF,

∴∠FAC=∠AOD,

∴△ACE∽△DCA,

,

,

∴AC=AE= ,

∵∠CAE=∠CBF,

∴△ACE∽△BFE,

,

= ,

∴EF=


【解析】(1)由BC是⊙O的直徑,得到∠BAF+∠FAC=90°,等量代換得到∠D+∠AOD=90°,于是得到結論;(2)連接BF,根據(jù)相似三角形的判定和性質即可得到結論.
【考點精析】本題主要考查了相似三角形的判定與性質的相關知識點,需要掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點,PEBC于點E,PFCD于點F,連接EF.給出下列五個結論:①AP=EF;②APEF;③△APD一定是等腰三角形;④∠PFE=BAP;⑤PD=2EC.其中正確的結論是___________________(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.

(1)分別寫出下列各點的坐標:A′ ; B′ ;C′ ;

(2)說明△A′B′C′由△ABC經過怎樣的平移得到?

(3)若點P(a,b)是△ABC內部一點,則平移后△A′B′C′內的對應點P′的坐標為 ;

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別為邊的中點,是對角線,過點的延長線于點

1)求證:;

2)若,求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形的兩條對角線的夾角為60度,對角線長為15,則矩形的較短邊長為(

A. 12B. 10C. 7.5D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相切于點T,直線PO與⊙O相交于A,B兩點.
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當BE=BC時,求∠CDO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平行四邊形ABCD的兩邊ABAD的長是關于x的方程x2mx+0的兩個實數(shù)根.

1m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=10,BC=5,BN平分∠ABCCD于點N,交AD的延長線于點M,則下列結論:①DM=5;②線段BM、CD互相平分;③BDAM;④△BCN是等邊三角形;⑤ANBM,其中正確的有______________(填序號).

查看答案和解析>>

同步練習冊答案