分析 (1)作EP⊥CD于P,EQ⊥BC于Q,證明Rt△EQF≌Rt△EPD和△ADE≌△CDG,進而得到結(jié)論;
(2)根據(jù)(1)方法得到CG=AC+CE,求出CG的長度,最后利用勾股定理求出GE的長.
解答 (1)證明:作EP⊥CD于P,EQ⊥BC于Q.
∵∠DCA=∠BCA,
∴EQ=EP,
∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,
∴∠QEF=∠PED,
∴Rt△EQF≌Rt△EPD,
∴EF=ED,
∴矩形DEFG是正方形,
∴DE=DG,∠EDG=90°,
∵∠ADE+∠EDC=90°,∠CDG+∠EDC=90°,
∴∠ADE=∠CDG,
∵AD=DC,
∴△ADE≌△CDG,
∴AE=CG.
∴CG=AC-CE;
(2)仿照(1)可證得CG=AC+CE,
∵AC=$\sqrt{A{D}^{2}+D{C}^{2}}$=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$,
∴CG=AC+CE=3$\sqrt{2}$+$\sqrt{2}$=4$\sqrt{2}$,
∵△ADE≌△CDG,
∴∠DCG=∠DAE=45°,
∴∠ACG=∠ACD+∠DCG=90°,
在Rt△GCE中,
GE=$\sqrt{C{G}^{2}+E{C}^{2}}$=$\sqrt{(4\sqrt{2})^{2}+(\sqrt{2})^{2}}$=$\sqrt{34}$.
點評 本題主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的知識,解題的關(guān)鍵是作輔助線,證明三角形全等,此題難度不大.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com