如圖7,已知P、Q是△ABC的邊BC上的兩點(diǎn),且BP=QC=PQ=AP=AQ,則∠BAC=________
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖1,已知平行四邊形PQRS是⊙O的內(nèi)接四邊形.
(1)求證:平行四邊形PQRS是矩形.
(2)如圖2,如果將題目中的⊙O改為邊長(zhǎng)為a的正方形ABCD,在AB、CD上分別取點(diǎn)P、S,連接PS,將Rt△SAP繞正方形中心O旋轉(zhuǎn)180°得Rt△QCR,從而得四邊形PQRS.試判斷四邊形RQRS能否變化成矩形?若能,設(shè)PA=x,SA=y,請(qǐng)說明x、y具有什么關(guān)系時(shí),四邊形PQRS是矩形;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.說明:RP=RQ.
請(qǐng)?zhí)骄肯铝凶兓?BR>變化一:交換題設(shè)與結(jié)論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,R是OA的延長(zhǎng)線上一點(diǎn),且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運(yùn)動(dòng)探究:
(1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點(diǎn),請(qǐng)你根據(jù)原題中的條件完成圖4,并判斷結(jié)論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.說明:RP=RQ.運(yùn)動(dòng)探求.
(1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷) 答:
成立
成立

(2)如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京二模)在?ABCD中,AD=6,∠ABC=60°,點(diǎn)E在邊BC上,過點(diǎn)E作直線EF⊥AB,垂足為點(diǎn)F,EF與DC的延長(zhǎng)線相交于點(diǎn)H.
(1)如圖1,已知點(diǎn)E是BC的中點(diǎn),求證:以E為圓心、EF為半徑的圓與直線CD相切;
(2)如圖2,已知點(diǎn)E不是BC的中點(diǎn),連接BH、CF,求梯形BHCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知C、D是雙曲線y=
m
x
在第一象限內(nèi)的分支上兩點(diǎn),直線CD分別交x軸、y軸于A、B,CG⊥x軸于G,DH⊥x軸于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D點(diǎn)的坐標(biāo);
(2)在雙曲線第一象限內(nèi)的分支上是否有一點(diǎn)P,使得S△POC=S△POD?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(3)如圖2,點(diǎn)K是雙曲線y=
m
x
在第三象限內(nèi)的分支上的一動(dòng)點(diǎn),過點(diǎn)K作KM⊥y軸于M,OE平分∠KOA,KE⊥OE,KE交y軸于N,直線ME交x軸于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一個(gè)為定值,請(qǐng)你選擇正確結(jié)論并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案