【題目】如圖,所有正方形的中心均在坐標(biāo)原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依此為24,68,...,頂點依此用A1A2,A3,A4......表示,則頂點A55的坐標(biāo)是___

【答案】14,14

【解析】

觀察圖象,每四個點一圈進(jìn)行循環(huán),每一圈第一個點在第三象限,根據(jù)點的腳標(biāo)與坐標(biāo)尋找規(guī)律

55=413+3,A A 在同一象限,即都在第一象限,

根據(jù)題中圖形中的規(guī)律可得

3=40+3,A 的坐標(biāo)為(0+1,0+1),A (1,1),

7=41+3,A 的坐標(biāo)為(1+1,1+1), A (2,2),

11=42+3,A 的坐標(biāo)為(2+1,2+1), A (3,3);

55=413+3,A (14,14),A 的坐標(biāo)為(13+1, 13+1)

故答案為(14,14)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點、,連接.如果點在直線上,且點到直線的距離不大于1,那么稱點是線段的“臨近點”.

1)判斷點是否是線段的“臨近點”,并說明理由;

2)若點是線段的“臨近點”.①求的取值范圍;②設(shè)直線軸交于點,試用表達(dá)的面積,并求出的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于 的方程 的解是 = = 、 、 為常數(shù), 0),則方程 的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°.將△ABC繞點A按逆時針方向旋轉(zhuǎn)15°后得到△AB1C1 , B1C1交AC于點D,如果AD=2 ,則△ABC的周長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解該校學(xué)生喜歡球類活動的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖,請根圖中提供的信息,解答下列問題:

1)參加調(diào)查的人數(shù)共有  人;

2)將條形圖補(bǔ)充完整;

3)求在扇形圖中表示其它球類的扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DE′F′G′,此時點G′在AC上,連接CE′,則CE′+CG′=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別交x、y軸于點A、B,直線BC分別交x、y軸于點C、B,點A的坐標(biāo)為(3,0),ABO=30°,且AB⊥BC.

(1)求直線BC和AB的解析式;

(2)將點B沿某條直線折疊到點O,折痕分別交BC、BA于點E、D,在x軸上是否存在點F,使得點D、E、F為頂點的三角形是以DE為斜邊的直角三角形?若存在,請求出F點坐標(biāo);若不存在,請說明理由;

(3)在平面直角坐標(biāo)系內(nèi)是否存在兩個點,使得這兩個點與B、C兩點構(gòu)成的四邊形是正方形?若存在,請求出這兩點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC= ,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AD、BD是半圓的弦,∠PDA=∠PBD,∠BDE=60°,若PD= ,則PA的長為

查看答案和解析>>

同步練習(xí)冊答案