【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
【答案】
(1)解:∠ABE=∠ACD;
在△ABE和△ACD中,
,
∴△ABE≌△ACD,
∴∠ABE=∠ACD;
(2)證明:∵AB=AC,
∴∠ABC=∠ACB,
由(1)可知∠ABE=∠ACD,
∴∠FBC=∠FCB,
∴FB=FC,
∵AB=AC,
∴點A、F均在線段BC的垂直平分線上,
即直線AF垂直平分線段BC.
【解析】(1)證得△ABE≌△ACD后利用全等三角形的對應(yīng)角相等即可證得結(jié)論;(2)利用垂直平分線段的性質(zhì)即可證得結(jié)論.
【考點精析】認真審題,首先需要了解線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等),還要掌握等腰三角形的性質(zhì)(等腰三角形的兩個底角相等(簡稱:等邊對等角))的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有三個分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地完全相同,先從盒子里隨機抽取一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字,請你用畫樹狀圖或列表的方法求兩次取出小球上的數(shù)字和大于10的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當(dāng)四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.
(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=4 ,求點G到BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):
(Ⅰ)如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD . (S表示面積)
(Ⅱ)實驗探究:某數(shù)學(xué)實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結(jié)論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1 , 得到矩形A1B1C1D1 .
如圖2,當(dāng)AH>BF時,若將點G向點C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+S .
如圖3,當(dāng)AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿鱏四邊形EFGH、S矩形ABCD與S 之間的數(shù)量關(guān)系,并說明理由.
(Ⅲ)遷移應(yīng)用:
請直接應(yīng)用“實驗探究”中發(fā)現(xiàn)的結(jié)論解答下列問題:
⑴如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF= ,求EG的長.
⑵如圖5,在矩形ABCD中,AB=3,AD=5,點E、H分別在邊AB、AD上,BE=1,DH=2,點F、G分別是邊BC、CD上的動點,且FG= ,連接EF、HG,請直接寫出四邊形EFGH面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,點F為BC邊上一點,連接AF交DE于點G,則下列結(jié)論中一定正確的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點E,F(xiàn)分別在AD,CD上,BG⊥EF,點G為垂足,AB=5,AE=1,CF=2,則BG= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com