【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣2,5),B(﹣4,3),C(﹣1,﹣1).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)請畫出△ABC關(guān)于y軸對稱的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo);
(3)在邊AC上有一點(diǎn)P(a、b),直接寫出以上兩次圖形變換后的對稱點(diǎn)P1、P2的坐標(biāo).
【答案】(1)A1(-2,-5);(2)A2(2,5);(3)P1(a,-b),P2(-a,b)
【解析】
(1)分別作出點(diǎn)A、B、C關(guān)于x軸對稱的點(diǎn),然后順次連接,寫出點(diǎn)A1的坐標(biāo);
(2)分別作出點(diǎn)A、B、C關(guān)于y軸對稱的點(diǎn),然后順次連接,寫出點(diǎn)A2的坐標(biāo);
(3)根據(jù)圖形可得,點(diǎn)P1的坐標(biāo)為(a,-b),P2的坐標(biāo)為(-a,b).
解:(1)A1(-2,-5);如圖所示
(2)A2(2,5);如圖所示
(3)P1(a,-b),P2(-a,b)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)和點(diǎn).
求該拋物線所對應(yīng)的函數(shù)解析式;
該拋物線與直線相交于C、D兩點(diǎn),點(diǎn)P是拋物線上的動點(diǎn)且位于x軸下方,直線軸,分別與x軸和直線CD交于點(diǎn)M、N.
連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動過程中,的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;
連結(jié)PB,過點(diǎn)C作,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得與相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在三角形紙片ABC中,已知∠ABC=90,AC=5,BC=4,過點(diǎn)A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點(diǎn)B落在直線l上的點(diǎn)P處,折痕為MN,當(dāng)點(diǎn)P在直線l上移動時,折痕的端點(diǎn)M、N也隨之移動,若限定端點(diǎn)M、N分別在AB、BC邊上(包括端點(diǎn))移動,則線段AP長度的最大值與最小值的差為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小,此時∠MAN的度數(shù)為_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,E為BC中點(diǎn),AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,CG∥AE,CG交AF于點(diǎn)H,交AD于點(diǎn)G.
(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項(xiàng)式x2+2ax﹣3a2,就不能直接運(yùn)用公式了.此時,我們可以在二次三項(xiàng)式x2+2ax﹣3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像這樣,先添﹣適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個項(xiàng),使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2﹣6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實(shí)數(shù),當(dāng)x為何值時,此多項(xiàng)式2x2的最小值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.(1)請用兩種不同的方法求圖②中陰影部分的面積:
方法1: 方法2:
(2)觀察圖②請你寫出下列三個代數(shù)式:(m+n)2,(m﹣n)2,mn之間的等量關(guān)系. ;
(3)根據(jù)(2)題中的等量關(guān)系,解決:已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點(diǎn)畫一條直線,將此三角形分割成兩個等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點(diǎn)A畫直線交BC于點(diǎn)D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
喜歡動腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個等腰三角形.
他的做法是:
如圖3,先畫△ADC ,使DA=DC,延長AD到點(diǎn)B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因?yàn)椤?/span>CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結(jié)論:
當(dāng)三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個等腰三角形.
請你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個角滿足怎樣的數(shù)量關(guān)系時,此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com