【題目】如圖,已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=1,交x軸的一個交點為(x1 , 0),且﹣1<x1<0,有下列5個結(jié)論:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的實數(shù))其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
【答案】D
【解析】①拋物線對稱軸在y軸的右側(cè),則a、b異號,即b>0.
拋物線與y軸交于正半軸,則c>0.
∵a<0,
∴abc<0.
故①錯誤;②由圖示知,當(dāng)x=3時,y<0,即9a3b+c<0,故②正確;③由圖示知,x=1時,y<0,即ab+c<0,
∵x= =1,
∴a= b,
∴ab+c= bb+c<0,即2c<3b,故③正確;④由圖示知,x=1時,y>0,即a+b+c>0
∵ab+c<0,
∴(a+b+c)(ab+c)<0,則(a+c)2b2<0,
∴(a+c)2<b2;
故④正確;⑤∵當(dāng)x=1時,y最大,即a+b+c最大,故a+b+c>am2+bm+c,即a+b>m(am+b),(m為實數(shù)且m≠1),故⑤正確。
綜上所述,其中正確的結(jié)論有4個。
所以答案是:D.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長AB=4,分別以點A、B為圓心,AB長為半徑畫弧,兩弧交于點E,則 的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達終點時,另一點也停止運動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點O為直線AB上的一點,∠EOF為直角,OC平分∠BOE.
(1)如圖1,若∠AOE=45°,寫出∠COF等于多少度;
(2)如圖1,若∠AOE=求∠COF的度效(用含的代數(shù)式表示);
(3)如圖2,若∠AOE=OD平分∠AOC,且∠AOD-∠BOF=45°,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,求證
(2)如圖,為垂足,平分交于點.求的度數(shù).
(3)已知
①如圖1,求的度數(shù);
②如圖2,和的平分線相交于點,求的度數(shù);
③在圖2中,畫和平分線相交于點,求的度數(shù)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板的一條直角邊在同一條直線上,則∠1的度數(shù)為( )
A.75°
B.65°
C.45°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCO中,邊AB=12,BC=8.以點0為原點,OA、OC所在的直線為y軸和x軸建立直角坐標(biāo)系.
(1)點A的坐標(biāo)為(0,8),寫出B.C兩點的坐標(biāo);
(2)若點P從C點出發(fā),以3單位/秒的速度向CO方向移動(不超過點O),點Q從原點O出發(fā),以2單位/秒的速度向OA方向移動(不超過點A),設(shè)P、Q兩點同時出發(fā),在它們移動過程中,四邊形OPBQ的面積是否發(fā)生變化?若不變,求其值;若變化,求變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com