【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點.
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
【答案】(1)∠DAC=20°,∠BOA=125° (2)60° (3)10
【解析】
(1)根據(jù)垂直的定義得到∠ADC=90°,根據(jù)角平分線的定義得到∠ABO=30°,根據(jù)三角形的內(nèi)角和即可得到結論;
(2)連接OC,根據(jù)角平分線的性質(zhì)得到OM=ON,根據(jù)全等三角形的性質(zhì)得到∠EOM=∠FOH,根據(jù)角平分線的定義即可得到結論;
(3)根據(jù)勾股定理得到AB= =10,根據(jù)三角形的面積公式得到CF,求得AF,得到S△ABF=S△ABC-S△BCF,根據(jù)角平分線定理得到,求得=3,于是得到結論.
(1)∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠DAC=180°-90°-70°=20°;
∵∠BAC=50°,∠C=70°,
∴∠BAO=25°,∠ABC=60°,
∵BF是∠ABC的角平分線,
∴∠ABO=30°,
∴∠BOA=180°-∠BAO-∠ABO=180°-25°-30°=125°;
(2)如圖2:連接OC,
∴AE、BF是角平分線,交于O點,
∴OC是∠ACB的角平分線,
∴∠OCF=∠OCE,
過O作OM⊥BC,ON⊥AC,
則OM=ON,
在Rt△OEM與Rt△OFN中,
,
∴Rt△OEM≌Rt△OFN,(HL),
∴∠EOM=∠FON,
∴∠MON=∠EOF=180°-∠C,
∵AE、BF是角平分線,
∴∠AOB=90°+∠ACB,
即90°+∠ACB=180°-∠ACB,
∴∠ACB=60°;
(3)∵∠C=90°,BC=8,AC=6,
∴AB==10,
∵AE是角平分線,
∴ ,
∴BE=5,CE=3,
∵S△CEF=ECCF=×3CF=4,
∴CF= ,
∴AF= ,
∵S△ABC=BCAC=×8×6=24,
∴S△ABF=S△ABC-S
∵AE平分∠BAC,
∴
∴=3,
∴
∴S△AOB==10.
科目:初中數(shù)學 來源: 題型:
【題目】已知,Rt△ABC中,∠C=90.
(1)當∠B=60時,=_______;當∠A=45時,=_______.
(2)當∠B=2∠A時,求的值;
(3)若AB=2BC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F.
(1)求證:DE⊥AB;
(2)若tan∠BDE=, CF=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象拋物線與軸相交于不同的兩點,,且,
(1)若拋物線的對稱軸為求的值;
(2)若,求的取值范圍;
(3)若該拋物線與軸相交于點D,連接BD,且∠OBD=60°,拋物線的對稱軸與軸相交點E,點F是直線上的一點,點F的縱坐標為,連接AF,滿足∠ADB=∠AFE,求該二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小、質(zhì)地均相同的乒乓球,每個球上面分別標有1,2,3,4.小林先從布袋中隨機抽取一個乒乓球(不放回去),再從剩下的3個球中隨機抽取第二個乒乓球.
(1)請你用樹狀圖或列表法列出所有可能的結果;
(2)求兩次取得乒乓球的數(shù)字之積為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B、C、D是正方形網(wǎng)格紙上的四個格點,根據(jù)要求在網(wǎng)格中畫圖并標注相關字母.
①畫線段AB;
②畫射線CA、直線AD;
③過點B畫AD的平行線BE;
④過點D畫AC的垂線,垂足為F.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明為了解政府調(diào)整水價方案的社會反響,隨機訪問了自己居住小區(qū)的部分居民,就“每月每戶的用水量”和“調(diào)價對用水行為改變”兩個問題進行調(diào)查,并把調(diào)查結果整理成下面的圖1、圖2.
小明發(fā)現(xiàn)每月每戶的用水量為5 -35 之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不會考慮用水方式的改變.根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:
(1) ,小明調(diào)查了 戶居民,并補全圖1;
(2)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?
(3)如果小明所在小區(qū)有1800戶居民,請你估計“視調(diào)價漲幅采取相應的用水方式改變”的居民戶數(shù)有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com