若一個三角形的3個內(nèi)角度數(shù)之比為5:3:1,則與之對應(yīng)的3個外角的度數(shù)之比為(  )

A.4:3:2B.3:1:5C.3:2:4D.2:3:4

D

解析試題分析:先根據(jù)3個內(nèi)角的度數(shù)之比結(jié)合三角形的內(nèi)角和定理求得這3個內(nèi)角的度數(shù),即可求得與之對應(yīng)的3個外角的度數(shù),從而得到結(jié)果.
∵三角形的3個內(nèi)角度數(shù)之比為5:3:1
∴這3個內(nèi)角的度數(shù)分別為100°、60°、20°
∴與之對應(yīng)的3個外角的度數(shù)分別為80°、120°、160°
∴這3個外角的度數(shù)之比為2:3:4
故選D.
考點:三角形的內(nèi)角與外角
點評:三角形的內(nèi)角和定理是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖①,將一張直角三角形紙片△ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、下列命題中,真命題是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在
1
1
個、
2
2
個、
3
3
個大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個三角形中,如果兩邊的平方和等于第三邊的平方,那么這個三角形為直角三角形.類似地,我們定義:對于任意的三角形,設(shè)其三個角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內(nèi)接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直徑BE交AC于點D.
①求證:△ABC是勾股三角形;
②求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

若一個三角形的兩個內(nèi)的別70°,40°,則這個三角形是________三角形.

查看答案和解析>>

同步練習(xí)冊答案