某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在
1
1
個、
2
2
個、
3
3
個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明.
分析:(1)分別畫一下即可得出答案;
(2)先判斷,再舉一個例子;例如:在Rt△ABC中,∠B=90°,AB=BC=1,則AC=
2
解答:解:(1)1,2,3.…(3分)


(2)乙同學的結果不正確.
例如:在Rt△ABC中,∠B=90°,AB=BC=1,則AC=
2
,
如圖①,四邊形DEFB是只有一個頂點在斜邊上的內(nèi)接正方形,
設它的邊長為a,則依題意可得:
a
1
=
1-a
1
,
解得:a=
1
2

如圖②,四邊形DEFH兩個頂點都在斜邊上的內(nèi)接正方形,
設它的邊長為b,則依題意可得:
b
2
=
2
2
-b
2
2
,
解得:b=
2
3

∵a>b,
∴乙同學的結果不正確.
點評:本題考查了相似三角形的判定與性質(zhì)以及正方形的性質(zhì),舉出例子是解此題的關鍵,本題難度較大,注意第一題可以動手畫一下.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在
 
個、
 
個、
 
個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較。
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

       甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

       乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

       丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數(shù)據(jù);

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明
(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省江陰市九年級上學期期中考試數(shù)學卷 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

        甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

        乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

        丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數(shù)據(jù);

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

同步練習冊答案