分析 (1)連接AC,根據(jù)切線的性質(zhì)以及等腰三角形的性質(zhì)得出∠D=∠ACD=∠ABC,根據(jù)圓周角定理得出∠ACB=90°,然后根據(jù)三角形內(nèi)角和定理即可求得∠D的度數(shù);
(2)連接OC、BE,先證得△AOC是等邊三角形,然后證得四邊形COBE是平行四邊形即可證得結(jié)論.
解答 (1)解:連接AC,
∵CD是⊙O的切線,
∴∠ACD=∠ABC,
∵AB是直徑,
∴∠ACB=90°,
∵CD=CB,
∴∠D=∠ABC,
∴∠D=∠ACD=∠ABC,
∵∠D+∠ACD+∠ABC+∠ACB=90°,
∴∠D=30°;
(2)證明:連接OC、BE,
∵∠D=∠ACD=30°,
∴∠CAB=60°,
∵OA=OC,
∴△AOC是等邊三角形,
∴AC=OC,∠AOC=60°,
∵CE∥AB,
∴AC=EB,
∴四邊形ACEB是等腰梯形,OC=BE,
∴∠CAB=∠EBA=60°,
∴∠AOC=∠EBA=60°,
∴OC∥BE,
∴四邊形COBE是平行四邊形,
∵OC=OB,
∴以點C,O,B,E為頂點的四邊形是菱形.
點評 本題考查了切線的性質(zhì),圓周角定理,等腰梯形的判定和性質(zhì),菱形的判定等,作出輔助線構(gòu)建直角三角形和等邊三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 | |
男生 | 6.9 | 2.4 | 7 | 91.7% | 16.7% |
女生 | 7 | 1.3 | 7 | 83.3% | 8.3% |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com