精英家教網 > 初中數學 > 題目詳情
如圖,已知二次函數圖象的頂點為原點,直線y=
12
x+4的圖象與該二次函數的圖象交于A點(8,8),直線與x軸的交點為C,與y軸的交點為B.
(1)求B點的坐標與這個二次函數的解析式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P點作x軸的垂線與這個二次函數的圖象交于D點,與x軸交于點E.設該線段PD的長為h,點P的橫坐標為t,求h與t之間的函數解析式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點P,使得以點P、D、B為頂點的三角形與△B精英家教網OC相似?若存在,請求出P點的坐標;若不存在,請說明理由.
分析:(1)根據二次函數的頂點為原點,得出二次函數的一般解析式y(tǒng)=ax2,將(8,8)代入即可;
(2)直接表示出PE與DE的長度從而得出PD的長,即可得出解析式;
(3)分別為當∠PDB=∠BOC=90°時與當∠PDB=∠BOC=90°時,利用相似三角形的判定與性質求出即可.
解答:解:(1)令x=0,代入y=
1
2
x+4
,
∴y=4,
∴B(0,4).
設y=ax2,把(8,8)代入得:82•a=8,
a=
1
8
,
y=
1
8
x2
,

(2)∵點P的橫坐標為t,
PE=
1
2
t+4;DE=
1
8
t2

PD=PE-DE=
1
2
t+4-
1
8
t2

h=-
1
8
t2+
1
2
t+4(0<t<8)



(3)存在,
①當∠PDB=∠BOC=90°時,精英家教網
∴BD∥CE,
∴∠PBD=∠BCO.
∴△PDB∽△BOC,
PD
BO
=
BD
CO

令y=
1
2
x=4=0,得x=-8,
∴C(-8,0),
∴CO=8.
-
1
8
t2+
1
2
t+4
4
=
t
8

化簡得:t2=32.
解得:t1=4
2
;t2=-4
2
<0
(不合題意,舍去).
t1=4
2
代入y=
1
2
x+4
,
y=2
2
+4

∴點P的坐標為(4
2
,2
2
+4)

②當∠PBD=∠BOC=90°時,
∵PD∥BO,∴∠DPB=∠CBO.
∴△PBD∽△BOC.
過點D作DF⊥OB,
∵∠DPB+∠PDB=90°,∠BDF+∠PDB=90°,
∴∠BDF=∠DPB=∠CBO.
∵∠BFD=∠COB,
△DFB∽△BOC,
BF=BO-OF=4-
1
8
t2
,
DF
BO
=
BF
CO
精英家教網
t
4
=
4-
1
8
t2
8

化簡得:t2+16t-32=0.
解得:t1=-8+4
6
t2=-8-4
6
<0
(不合題意,舍去)
t1=-8+4
6
代入y=
1
2
x+4
,
得:y=2
6
,
∴P點的坐標為(-8+4
6
,2
6
)
,
∴當P點的坐標為(-8+4
6
,2
6
)
(4
2
,2
2
+4)

以點P.D.B為頂點的三角形與△BOC相似.
點評:此題主要考查了二次函數的綜合應用以及相似三角形的判定等知識,熟練應用相似三角形的判定與性質是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知二次函數圖象的頂點坐標為C(1,0),直線y=x+m與該二次函數的圖象交于A、B兩點,其中A點的坐標為(3,4),B點在軸y上.
(1)求m的值及這個二次函數的關系式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數的圖象交于點E,設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•高淳縣一模)如圖,已知二次函數y=-
1
2
x2+mx+3的圖象經過點A(-1,
9
2
).
(1)求該二次函數的表達式,并寫出該函數圖象的頂點坐標;
(2)點P(2a,a)(其中a>0),與點Q均在該函數的圖象上,且這兩點關于圖象的對稱軸對稱,求a的值及點Q到y(tǒng)軸的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•江寧區(qū)二模)如圖,已知二次函數y=ax2+bx+3的圖象過點A(-1,0),對稱軸為過點(1,0)且與y軸平行的直線.
(1)求該二次函數的關系式;
(2)結合圖象,解答下列問題:
①當x取什么值時,該函數的圖象在x軸上方?
②當-1<x<2時,求函數y的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數圖象的頂點坐標為M(2,0),直線y=x+2與該二次函數的圖象交于A、B兩點,其中點A在y軸上,P為線段AB上一動點(除A,B兩端點外),過P作x軸的垂線與二次函數的圖象交于點Q設線段PQ的長為l,點P的橫坐標為x.
(1)求二次函數的解析式;
(2)求l與x之間的函數關系式,并求出l的取值范圍;
(3)線段AB上是否存在一點P,使四邊形PQMA為梯形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=(x-1)2的圖象的頂點為C點,圖象與直線y=x+m的圖象交于A、B兩點,其中A點的坐標為(3,4),B點在y軸上.
(1)求m的值;
(2)點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與這個二次函數的圖象交于點E,設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數解析式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案