如圖,OA=OB,OC=OD,∠O=50°,∠D=30°,則∠AEC等于(  )
分析:首先由已知可求得∠OAD的度數(shù),通過三角形全等及四邊形的知識求出∠AEB的度數(shù),然后其鄰補角就可求出了.
解答:解:∵如圖,在△AOD中,∠O=50°,∠D=30°,
∴∠OAD=180°-50°-30°=100°,
在△AOD與△BOC中,
OA=OB
∠O=∠O
OD=OC
,
∴△AOD≌△BOC(SAS),
故∠OAD=∠OBC=100°.
在四邊形OBEA中,
∠AEB=360°-∠OBC-∠OAD-∠O
=360°-100°-100°-50°
=110°,
又∵∠AEB+∠AEC=180°,
∴∠AEC=180°-110°=70°.
故選:A.
點評:本題考查了全等三角形的判定及性質(zhì);解題過程中用到了三角形、四邊形的內(nèi)角和的知識,要根據(jù)題目的要求及已知條件的位置綜合運用這些知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉田縣一模)如圖,OA⊥OB,△CDE的邊CD在OB上,∠ECD=45°.將△CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則
OC
CE
的值為
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA⊥OB,OC⊥OD,O是垂足,∠BOC=55°,那么∠AOD=
135°
135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA⊥OB,∠COD為平角,若OC平分∠AOB,則∠BOD=
135
135
°.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷