【題目】將數(shù)軸按如圖所示從某一點開始折出一個等邊,設(shè)點表示的數(shù)為,點表示的數(shù)為,點表示的數(shù)為,若將向右滾動,則的值等于_____;數(shù)字對應(yīng)的點將與的頂點______重合.

【答案】

【解析】

根據(jù)等邊三角形ABC,利用邊長相等得出-4-2x+1=2x+1-x-3),求出x即可;

再利用數(shù)字2018對應(yīng)的點與-4的距離為:2018+4=2022,得出2022÷3=674,C從出發(fā)到2018點滾動674周,即可得出答案.

∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x-3,點B表示的數(shù)為2x+1,點C表示的數(shù)為-4,

-4-2x+1=2x+1-x-3);

-3x=9,即x=-3

A表示的數(shù)為:x-3=-3-3=-6,

B表示的數(shù)為:2x+1=2×(-3+1=-5,

即等邊三角形ABC邊長為1,

數(shù)字2018對應(yīng)的點與-4的距離為:2018+4=2022

2022÷3=674,C從出發(fā)到2018點滾動674周,

∴數(shù)字2018對應(yīng)的點將與△ABC的頂點C重合.

故答案為:(1-3;(2C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,BAC的平分線ADBC邊于點D.AB上一點O為圓心作O,使O經(jīng)過點A和點D.

(1)判斷直線BCO的位置關(guān)系,并說明理由;

(2)若AC=3,B=30°,設(shè)OAB邊的另一個交點為E,求線段BD,BE與劣弧所圍成的陰影部分的面積(結(jié)果保留根號和)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝店在服裝銷售中發(fā)現(xiàn):進(jìn)貨價每件60元,銷售價每件100元的某童裝每天可售出20為了迎接六一兒童節(jié),童裝店決定采取適當(dāng)?shù)拇黉N措施,擴(kuò)大銷售量,增加盈利經(jīng)調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么每天就可多售出2件.

如果童裝店想每天銷售這種童裝盈利1050元,同時又要使顧客得到更多的實惠,那么每件童裝應(yīng)降價多少元?

每件童裝降價多少元時,童裝店每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在平行四邊形ABCD中,DEAB,BFCD,垂足分別為E、F,求證:AE=CF;

2)如圖(2),在平行四邊形ABCD中,AC、BD是兩條對角線,求證AC2+BD2=2AB2+BC2

3)如圖(3),PQPMN的中線,若PM=11,PN=13,MN=10,求出PQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸于A、B兩點,交y軸于點C,頂點為D.

(1)寫出拋物線的對稱軸及C、D兩點的坐標(biāo)(用含a的代數(shù)式表示)

(2)連接BD并以BD為直徑作⊙M,當(dāng)a=-1時,請判斷⊙M是否經(jīng)過點C,并說明理由;

(3)在(2)題的條件下,點P是拋物線上任意一點,過P作直線垂直于對稱軸,垂足為Q. 那么是否存在這樣的點P,使△PQD與以B、C、D為頂點的三角形相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊中,,關(guān)于軸對稱,軸負(fù)半軸于點

1)如圖1,求點坐標(biāo);

2)如圖2,軸負(fù)半軸上任一點,以為邊作等邊,的延長線交軸于點,求的長;

3)如圖3,在(1)的條件下,以為頂點作的角,它的兩邊分別與交于點,連接.探究線段、之間的關(guān)系,并子以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,有下列4個結(jié)論:①abc<0;②b2=4ac;③a+c=b﹣2;④m(am+b)+b>a(m≠﹣1),其中結(jié)論正確的有____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖點在正比例函數(shù)圖象上,點坐標(biāo)為,連接,,點是線段的中點,點在線段上以每秒2個單位的速度由點向點運動,點在線段上由點向點運動,兩點同時運動,同時停止,運動時間為秒.

1)正比例函數(shù)的關(guān)系式為 ;

2)當(dāng)秒,且時,求點的坐標(biāo);

3)連接,在點運動過程中,是否全等?如果全等,請求出點的運動速度;如果不全等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC

(1)如圖1,若點O在邊BC上,OEABOFAC,垂足分別為E,F.求證:AB=AC;

(2)如圖,若點O在△ABC的內(nèi)部,求證:AB=AC

(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.

查看答案和解析>>

同步練習(xí)冊答案