已知:在面積為7的梯形ABCD中,AD∥BC,AD=3,BC=4,P為邊AD上不與A、D重合的一動點,Q是邊BC上的任意一點,連接AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,則△PEF面積最大值是   
【答案】分析:設(shè)PD=x,S△PEF=y.根據(jù)平行線的性質(zhì)、全等三角形的判定及相似三角形的判定,證明△PEF≌△QFE、△AEP∽△AQD、△PDF∽△ADQ,相似三角形的比是相似比的平方,再由三角形AQD與梯形ABCD的面積公式求得梯形的高,代入S△PEF=(S△AQD-S△DPF-S△APE)÷2,得出關(guān)于x的二次函數(shù)方程,根據(jù)頂點坐標(biāo)公式,求得則△PEF面積最大值.
解答:解:設(shè)PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高為h,
∵AD=3,BC=4,梯形ABCD面積為7,

解得
∵PE∥DQ,
∴∠PEF=∠QFE,∠EPF=∠PFD,
又∵PF∥AQ,
∴∠PFD=∠EQF,
∴∠EPF=∠EQF,
∵EF=FE,
∴△PEF≌△QFE(AAS),
∵PE∥DQ,
∴△AEP∽△AQD,
同理,△DPF∽△DAQ,
==(2,
∴S△PEF=(S△AQD-S△DPF-S△APE)÷2,
∴y=-x2+x,
∵y最大值==,即y最大值=
∴△PEF面積最大值是
點評:本題綜合考查了二次函數(shù)的最值、三角形的面積、梯形的面積以及相似三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點B為中心,沿逆時針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習(xí)冊答案