【題目】如圖,直線y=x+m與y=nx+4n(n≠0)的交點的橫坐標(biāo)為2,則關(guān)于x的不等式x+m>nx+4n>0的整數(shù)解為 ( )
A. 1B. 3C. 4D. 5
【答案】B
【解析】
先解方程nx+4n=0得到直線y=nx+4n與x軸的交點坐標(biāo)為(-4,0),然后利用函數(shù)圖象寫出在x軸上方且直線y=nx+4n在直線y=-x+m的下方所對應(yīng)的自變量的范圍,再找出此范圍內(nèi)的整數(shù)即可
當(dāng)y=0時, nx+4n =0,解得=-4,所以直線y=nx+4n與x軸的交點坐標(biāo)為(-4,0)
當(dāng)x>-4時,nx+4n>0
當(dāng)x<-2時,-x+m>nx+4n
所以當(dāng)-4<x<-2時,-x+m>nx+4n>0
所以不等式-x+m>nx+4n>0的整數(shù)解為x=-3
故選B
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班準(zhǔn)備外出春游,有3名教師參加。有甲乙兩家旅行社,其收費標(biāo)準(zhǔn)都一樣,但都表示可以優(yōu)惠師生.甲旅行社承諾:教師免費,學(xué)生按8折收費;乙旅行社承諾:師生一律按7折收費.
問:(1)如果由旅行社籌辦春游活動,在什么條件下,兩家旅行社所收費用相等.
(2)如果這個班有45名學(xué)生,選擇哪家旅行社較恰當(dāng).請說明選擇的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,M、N分別是AD,BC的中點,∠AND=90°,連接CM交DN于點O.
(1)求證:△ABN≌△CDM;
(2)過點C作CE⊥MN于點E,交DN于點P,若PE=1,∠1=∠2,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用水,特制定如下的收費標(biāo)準(zhǔn):若每月每戶用水不超過10立方米,則按3元/立方米的水價收費,并加收0.2元/立方米的污水處理費;若超過10立方米,則超過的部分按4元/立方米的水價收費,污水處理費不變.
(1)若小華家5月份的用水量為8立方米,那么小華家5月份的水費為_______元;
(2)若小華家6月份的用水量為15立方米,那么小華家6月份的水費為_______元;
(3)若小華家某個月的用水量為a(a>10)立方米,求小華家這個月的水費(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在紙面所在的平面內(nèi),一只電子螞蟻從數(shù)軸上表示原點的位置O點出發(fā),按向上、向右、向下、向右的方向依次不斷移動,每次移動1個單位,其移動路線如圖所示,第1次移動到,第2次移動到,第3次移動到,……,第n次移動到,則△O的面積是( )
A.504B.C.D.505
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時間2019年4月10日21時,人類拍攝的首張黑洞照片問世,黑洞是一種引力極大的天體,連光都逃脫不了它的束縛,數(shù)學(xué)中也存在著神奇的“黑洞數(shù)”現(xiàn)象:
(1)請你用不同的三個數(shù)再試試,你發(fā)現(xiàn)了什么“神奇”的現(xiàn)象?
(2)請用所學(xué)過的知識現(xiàn)象解釋一下(1)中的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點,直線平行于直線EC,且直線與直線EC之間的距離為2,點F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點A恰好落在直線上, 則DF的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=4,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購買了一批A、B型芯片,其中A型芯片的單價比B型芯片的單價少9元,已知該公司用3120元購買A型芯片的條數(shù)與用4200元購買B型芯片的條數(shù)相等.
(1)求該公司購買的A、B型花片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用不超過6300元,求A型芯片至少購買多少條?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com