如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點(diǎn)B在第一象限,過點(diǎn)B作AB的垂線交x軸于點(diǎn)C.動點(diǎn)P從O點(diǎn)出發(fā)沿OC向C點(diǎn)運(yùn)動,動點(diǎn)Q從B點(diǎn)出發(fā)沿BA向A點(diǎn)運(yùn)動,P,Q兩點(diǎn)同時出發(fā),速度均為1個單位/秒。設(shè)運(yùn)動時間為t秒.
(1)求線段BC的長;
(2)連接PQ交線段OB于點(diǎn)E,過點(diǎn)E作x軸的平行線交線段BC于點(diǎn)F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點(diǎn)B逆時針旋轉(zhuǎn)得到△BE′F′,使點(diǎn)E的對應(yīng)點(diǎn)E′落在線段AB上,點(diǎn)F的對應(yīng)點(diǎn)是F′,E′F′交x軸于點(diǎn)G,連接PF、QG,當(dāng)t為何值時,?
(1)
(2) (0<t<3)
(3)當(dāng)t="1" 時,
【解析】解:(1)∵△AOB為等邊三角形,∴∠BAC=∠AOB=600。
∵BC⊥AB ,∴∠ABC=900。∴∠ACB=300,∠OBC=300!唷螦CB=∠OBC。
∴CO=OB=AB=OA=3!郃C=6。
∴BC=AC=。
(2)如圖,過點(diǎn)Q作QN∥OB交x軸于點(diǎn)N,
∴∠QNA=∠BOA=600=∠QAN。
∴△AQN為等邊三角形。
∵BQ=t,∴NQ=NA=AQ=3-t。
∴。∴。
∵OE∥QN,∴△POE∽△PNQ。
∴,即。∴。
∵EF∥x軸,∴∠BFE=∠BCO=∠FBE=300。∴EF=BE。
∴ (0<t<3)。
(3)如圖,
∵,
∴∠AEG=600=∠EAG。
∴GE′=GA ∴△AE′G為等邊三角形。
∵。
∴。
∴∠l=∠2 ,∠3=∠4。
∵∠l+∠2+∠3+∠4=1800,∴∠2+∠3=900,即∠QGA=900!。
∵EF∥OC,∴,即!。
∵,∴。
又∵∠FCP=∠BCA,∴△FCP∽△BCA。
∴。解得。
∵,∴,解得t=1。
∴當(dāng)t="1" 時,。
(1)由△AOB為等邊三角形得∠ACB=∠OBC=300,由此CO=OB=AB=OA=3,在Rt△ABC中,AC為6 ,從而BC=。
(2)過點(diǎn)Q作QN∥OB交x軸于點(diǎn)N,先證△AQN為等邊三角形,從而 ,
,再由△POE∽△PNQ對應(yīng)邊成比例計(jì)算得再由EF=BE易得出m與t之間的函數(shù)關(guān)系式。
(3)先證△AE′G為等邊三角形,再證∠QGA=900,通過兩邊成比例夾角相等得△FCP∽△BCA 再用含t的式子表示BQ、、PF、QG通過解方程求出。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com