精英家教網 > 初中數學 > 題目詳情

如圖,在?ABCD中,O為AC的中點,經過點O的直線交AB、CD于點E、F,交AD、CB的延長線于點M、N,則四邊形ANCM為什么四邊形?說說你的理由.

解:四邊形ANCM是平行四邊形.理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,且AD=BC(平行四邊形的對邊平行且相等).
又∵點M、N分別在線段AD、線段CB的延長線上,
∴AM∥CN,
∴∠AMO=∠CNO(兩直線平行,內錯角相等).
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AM=CN(全等三角形的對應邊相等),
∴四邊形ANCM為平行四邊形(有一組對邊平行且相等的四邊形為平行四邊形).
分析:通過全等三角形△AOM≌△CON的對應邊相等推知AM=CN,又由?ABCD的對邊平行可以證得AM∥NC,則根據“有一組對邊平行且相等的四邊形為平行四邊形”證得四邊形ANCM為平行四邊形.
點評:本題考查了全等三角形的判定與性質、平行四邊的判定與性質.證明△AOM≌△CON時,也可以根據全等三角形的判定定理ASA進行證明.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案