【題目】如圖,在矩形ABCD中,,AD=9,點P是AD邊上的一個動點,連接BP,將矩形ABCD沿BP折疊,得到△A1PB,連接A1C,取A1C的三等分點Q(CQ<A1Q),當(dāng)點P從點A出發(fā),沿邊AD運動到點D時停止運動,點Q的運動路徑長為( )
A.πB.C.D.
【答案】D
【解析】
連接AC,BD,相交于點O,過點Q作,交BC于點E,即點E為BC的三等分點,根據(jù)平行線分線段成比例得出為定值,可得出點Q的運動軌跡是以點E為圓心,QE為半徑的圓弧,通過對點A1運動軌跡的分析求出圓心角,最后根據(jù)弧長公式進行求解.
連接AC,BD,相交于點O,過點Q作,交BC于點E,即點E為BC的三等分點,
∵在矩形ABCD中,,AD=9,
∴,即,
∴,
∵將矩形ABCD沿BP折疊,得到△A1PB,
∴,
∴,
當(dāng)點P運動到點A時,點A1與點A重合,當(dāng)點P運動到點D時,點A1與A2重合,此時,
∴點Q的運動軌跡是以點E為圓心,QE為半徑,圓心角為的圓弧,
∴點Q的運動路徑長,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:①若則②若則③對頂角相等;④等腰三角形的兩底角相等.其中原命題和逆命題均為真命題的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面直角坐標系中,直線y=﹣x+3交坐標軸與B、C兩點,拋物線y=ax2+bx+3經(jīng)過B、C兩點,且交x軸于另一點A(﹣1,0).點D為拋物線在第一象限內(nèi)的一點,過點D作DQ∥CO,DQ交BC于點P,交x軸于點Q.
(1)求拋物線解析式;
(2)設(shè)點P的橫坐標為m,在點D的移動過程中,存在∠DCP=∠ACO,求出m值;
(3)在拋物線取點E,在坐標系內(nèi)取點F,問是否存在以C、B、E、F為頂點且以CB為邊的矩形?如果有請求出點E的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.
(1)求證:直線FG是⊙O的切線;
(2)若AC=10,cosA=,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校的教室A位于工地O的正西方向,且OA=200m,一臺拖拉機從O點出發(fā),以每秒5m的速度沿北偏西53°的方向行駛,設(shè)拖拉機的噪聲污染半徑為130m,則教室A是否在拖拉機的噪聲污染范圍內(nèi)?若不在,請說明理由;若在,求出教室A受噪聲污染的時間有幾秒.(參考數(shù)據(jù):sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中我們學(xué)習(xí)了尺規(guī)作圖,小明發(fā)現(xiàn)有些作圖只用一種工具就可以完成,你能解決下列問題嗎?
(1)請只用無刻度的直尺完成下列作圖,不寫畫法,保留畫圖痕跡(用虛線表示畫圖過程,實線表示畫圖結(jié)果)在圖1中,過點A畫一條直線把正五邊形ABCDE分成面積相等的兩部分;
(2)已知直線l及l外一點A(按下列要求作圖,不寫畫法,保留畫圖痕跡).
①在圖2中,只用圓規(guī)在直線l上畫出兩點B、C,使得點A、B、C是一個等腰三角形的三個頂點;
②在圖3中,只用圓規(guī)在直線l外畫出一點P,使得點A、P所在直線與直線l平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓與實驗樓的水平間距米,在實驗樓頂部點測得教學(xué)樓頂部點的仰角是,底部點的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想,如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為 ;
(2)問題解決,如圖②,在Rt△ABC中,∠ABC=90°,CB=6,AB=3,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;
(3)拓展延伸,如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=6,AB=3,DC=DA,請直接寫出BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com