【題目】如圖1,和都是等腰直角三角形,,在線段上,連接,的延長(zhǎng)線交于.
(1)猜想線段、的關(guān)系;(不必證明)
(2)當(dāng)點(diǎn)為內(nèi)部一點(diǎn)時(shí),使點(diǎn)和點(diǎn)分別在的兩側(cè),其它條件不變.請(qǐng)你在圖2中補(bǔ)全圖形,則(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)BE=AD,BE⊥AD;(2)(1)中結(jié)論仍然成立.
【解析】
(1)證明△BCE≌△ACD,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)題意補(bǔ)全圖形,然后證明△BCE≌△ACD,根據(jù)全等三角形的性質(zhì)即可得.
(1)BE=AD,BE⊥AD,理由如下:
∵△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,
∴BC=AC,EC=DC,
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD,∠CBE=∠CAD,
∵∠CAD+∠ADC=90°,
∴∠CBE+∠ADC=90°,
∴∠BFD=90°,
∴BE⊥AD;
(2)如圖所示,(1)中結(jié)論仍然成立,證明如下:
∵△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°
∴BC=AC,EC=DC,
∵∠ACB=∠DCE=90°,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD.
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD,∠1=∠2,
∵∠3=∠4,
∴∠AFB=∠ACB=90°,
∴BE⊥AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y1=ax2+bx+c的圖象過(guò)點(diǎn)A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式和頂點(diǎn)坐標(biāo);
(2)直線y2=kx+b過(guò)B、C兩點(diǎn),請(qǐng)直接寫(xiě)出當(dāng)y1>y2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O,則∠AOB的度數(shù)為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)在邊上,且,將沿對(duì)折至,延長(zhǎng)交邊于點(diǎn),連接、,則下列結(jié)論:①≌;②;③∥;④與的面積相等;⑤,其中正確的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A(1, );點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;
(3)當(dāng)△FPM是等邊三角形時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)﹣22× +|1﹣ |+6sin45°+1
(2)3tan30°﹣2tan45°+2sin60°+4cos60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)若拋物線頂點(diǎn)為D,點(diǎn)Q為直線AC上一動(dòng)點(diǎn),當(dāng)△DOQ的周長(zhǎng)最小時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com