如圖,在平行四邊形ABCD中,過點B作BE∥AC,在BG上取點E,連接DE交AC的延長線于點F.
(1)求證:DF=EF;
(2)如果AD=2,∠ADC=60°,AC⊥DC于點C,AC=2CF,求BE的長.

【答案】分析:(1)連接BD交AC于點O.由平行四邊形的性質(zhì)可知O為BD中點,又因為BG∥AF,進而證明DF=EF.
(2)利用直角三角形的性質(zhì)和三角形中位線性質(zhì)定理以及平行四邊形的性質(zhì)即可求出BE的長.
解答:(1)證明:連接BD交AC于點O.
∵四邊形ABCD是平行四邊形,
∴OB=OD,
∵BG∥AF,
∴DF=EF.
(2)∵AC⊥DC,∠ADC=60°,AD=2,
∴AC=. 
∵OF是△DBE的中位線,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四邊形ABCD是平行四邊形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=
點評:本題考查了平行四邊形的性質(zhì)、三角形的中位線定理以及在直角三角形中30°所對的直角邊是斜邊的一半和勾股定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案