如圖1,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A開始以1cm/s的速度沿AB邊向點B運動,點Q從點B以2cm/s的速度沿BC邊向點C運動,如果P、Q同時出發(fā),設(shè)運動時間為ts,
(1)當(dāng)t=2時,求△PBQ的面積;
(2)當(dāng)t=時,試說明△DPQ是直角三角形;
(3)當(dāng)運動3s時,P點停止運動,Q點以原速立即向B點返回,在返回的過程中,DP是否能平分∠ADQ?若能,求出點Q運動的時間;若不能,請說明理由.
(1)8 (2)見解析 (3)5.625s
解析試題分析:(1)當(dāng)t=2時,AP=t=2,BQ=2t=4,
∴BP=AB﹣AP=4,
∴△PBQ的面積=×4×4=8;
(2)當(dāng)t=時,AP=1.5,PB=4.5,BQ=3,CQ=9,
∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,
∵PQ2+DQ2=DP2,
∴∠DQP=90°,
∴△DPQ是直角三角形.
(3)設(shè)存在點Q在BC上,延長DQ與AB延長線交于點O.
設(shè)QB的長度為x,則QC的長度為(12﹣x),
∵DC∥BO,
∴∠C=∠QBO,∠CDP=∠O,
∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12﹣x,
∴=,即=,
解得:BO=,
∴AO=AB+BO=6+=,
∴DO=,PO=,
∵∠ADP=∠ODP,
∴12:DO=AP:PO,
代入解得x=0.75,
∴DP能平分∠ADQ,
∵點Q的速度為2cm/s,
∴P停止后Q往B走的路程為(6﹣0.75)=5.25cm.
∴時間為2.625s,加上剛開始的3s,Q點的運動時間為5.625s.
考點:矩形的性質(zhì);相似三角形的性質(zhì).
點評:用到的知識點為:直角三角形的面積等于兩直角邊積的一半;若三角形的三邊a,b,c符合a2+b2=c2,
那么∠C=90°;相似三角形的對應(yīng)邊成比例;三角形的角平分線分對邊的比等于另兩邊之比.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com