【題目】中,,在圖中按下列步驟進(jìn)行尺規(guī)作圖:

為圓心,長為半徑畫弧交于點;

分別以為圓心,以大于的長為半徑畫弧,兩弧相交于點;

畫射線于點,交的延長線于點,連接.

下列說法錯誤的是(

A.B.

C.D.,則

【答案】A

【解析】

由尺規(guī)作圖可知,平分,再證明是等腰三角形,四邊形為菱形,再利用菱形與等腰三角形的性質(zhì)、三角函數(shù)求法,進(jìn)一步證明,判斷各項即可.

解:∵四邊形ABCD是平行四邊形

,

∴∠MAE=BEA

由題意可得AE平分∠BAM

∴∠BAE=MAE

∴∠BEA=BAE

BE=AB

是等腰三角形

同理為等腰三角形

AB=BE

∵四邊形ABCD是平行四邊形

∴四邊形為菱形

∵∠FEC=FAD, F=FAD

∴∠FEC=F

為等腰三角形

∵四邊形為菱形則,

,則BC正確

連接垂直平分于點

中,

,

,則D正確

EF=EO=2.7BE,則A錯誤

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,A0,8),B4,0),直線y=﹣x沿x軸作平移運動,平移時交OAD,交OBC

1)當(dāng)直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達(dá)點B時結(jié)束運動,過點DDEy軸交AB于點E,連接CE,設(shè)運動時間為ts).

①是否存在t值,使得CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應(yīng)的t值;如果不能,請說明理由.

②將CDE沿DE翻折后得到FDE,設(shè)EDFADE重疊部分的面積為y(單位長度的平方).求y關(guān)于t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;

2)若點MAB的中點,將MC繞點M順時針旋轉(zhuǎn)90°得到MN,連接AN,請直接寫出AN+MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ABC135°,ABa,BCb,點P是邊AC上任意一點,連結(jié)BP,將△CPB沿PB翻折,得△C'PB

1)若a,b6,∠C'PC90°,求CP的長;

2)連結(jié)AC',當(dāng)以A、BPC'為頂點的四邊形是平行四邊形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,與弦所圍成圖形的外部的一定點,是弦上的一動點,連接于點.已知,設(shè),兩點間的距離為,兩點間的距離為兩點間的距離為

小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過程,請補充完整:

1)按照下表中自變量的值進(jìn)行取點、畫圖、測量分別得到了的幾組對應(yīng)值:

0

1

2

3

4

5

5.40

6

4.63

3.89

2.61

2.15

1.79

1.63

0.95

1.20

1.11

1.04

0.99

1.02

1.21

1.40

2.21

2)在同一平面直角坐標(biāo)系中,描出補全后的表中各組數(shù)值所對應(yīng)的點,,并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)的中點時,的長度約為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為aa50)米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中ADMN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

1)若圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過點,點的坐標(biāo)為,點是線段上的動點(點不與點重合),直線經(jīng)過點,并與交于點,過點,交于點

1)求的函數(shù)表達(dá)式;

2)當(dāng)時,

①求點的坐標(biāo);

②求

3)將點的橫坐標(biāo)記為,在點移動的過程中,直接寫出的范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點D,過點DDEAC于點E,交BC的延長線于點F

1)求證:AD=BD;

2)求證:DF是⊙O的切線

3)若⊙O直徑為18,求DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.

理解:

(1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)接于⊙O,∠BAC45°,ADBC,垂足為D,BD6,DC4

1)求⊙O的半徑;

2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案