【題目】 梯形ABCD中,ADBC,請用尺規(guī)作圖并解決問題.

1)作AB中點(diǎn)E,連接DE并延長交射線CB于點(diǎn)F,在DF的下方作∠FDG=∠ADE,邊DGBC于點(diǎn)G,連接EG;

2)試判斷EGDF的位置關(guān)系,并說明理由.

【答案】1)如圖所示,見解析;(2)見解析.

【解析】

(1)作出線段AB的垂直平分線,進(jìn)而得出AB的中點(diǎn)E,再作∠FDG=ADE,求出即可;

(2)首先得出△ADE≌△BFE(AAS),進(jìn)而求出EF=DE,然后證明DG=FG,利用等腰三角形的性質(zhì)得出答案.

(1)如圖所示:

(2)∵ADBC,

∴∠ADE=∠F,

在△ADE和△BFE中,

∴△ADE≌△BFE(AAS),

EFDE,

又∵∠ADE=∠FDG,

∴∠F=∠FDG,

DGFG

EGDF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點(diǎn)為A(32),B(x,y)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點(diǎn)坐標(biāo);

(2)Cy軸上的點(diǎn),且滿足△ABC的面積為10,求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生的理化實(shí)驗操作情況,隨機(jī)抽查了40名同學(xué)實(shí)驗操作的得分.根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

Ⅰ)扇形 ①的圓心角的大小是   ;

Ⅱ)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

Ⅲ)若該校九年級共有320名學(xué)生,估計該校理化實(shí)驗操作得滿分(10分)有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、P在反比例函數(shù)y=k0)的圖象上,點(diǎn)B、Q在直線y=x-3的圖象上,點(diǎn)B的縱坐標(biāo)為-1,ABx軸,且SOAB=4,若P、Q兩點(diǎn)關(guān)于y軸對稱,設(shè)點(diǎn)P的坐標(biāo)為(m,n).
1)求點(diǎn)A的坐標(biāo)和k的值;
2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 先化簡,再求值:

1[x2+y2﹣(x+y2+2xxy]÷4x,其中x2y2

2)(mn+2)(mn2)﹣(mn12,其中m2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且、,點(diǎn)D是第四象限的拋物線上的一個動點(diǎn),過點(diǎn)D作直線軸,垂足為點(diǎn)F,交線段BC于點(diǎn)E

求拋物線的解析式及點(diǎn)A的坐標(biāo);

當(dāng)時,求點(diǎn)D的坐標(biāo);

y軸上是否存在P點(diǎn),使得是以AC為腰的等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙的半徑為5,AB為直徑,C是圓周上一點(diǎn)。

1)求∠ACB的度數(shù)。

2)若ACAO,求陰影部分的面積(用含的代數(shù)式表示).

3)當(dāng)C點(diǎn)在圓周上移動時,ACBC、AB三條線段的長度之間存在著恒定不變的關(guān)系,請你寫出一種這樣的關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個問題:今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?

用今天的話說,大意是:如圖,是一座邊長為200步(是古代的長度單位)的正方形小城,東門位于的中點(diǎn),南門位于的中點(diǎn),出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點(diǎn)在直線上)?請你計算的長為__________步.

查看答案和解析>>

同步練習(xí)冊答案