李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A;
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm..

(1);(2);(3)20cm

解析試題分析:(1)由題意可展開正方體,得到矩形A1ACC1,螞蟻爬矩形A1ACC1的對角線,根據(jù)勾股定理即可求得結(jié)果;
(2)首先根據(jù)圓錐的底面周長等于展開圖的弧長,可求出圓錐側(cè)面展開圖中圓心角,進而得出AA1的長;
(3)作出點A關于CD的對稱點A',可構(gòu)造直角三角形結(jié)合相似三角形的知識,求得結(jié)果.
(1)如圖所示:

最短路程的長;
(2)如圖所示:

設圓心角為n,由題意得

解得
則∠AOC=60°,sin60°,解得
所以最短路程的長;
(3)如圖所示:


所以最短路程的長
考點:平面展開圖中最短路徑問題
點評:本題是中考熱點題,找出展開圖的與原圖形對應情況是解決問題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處;
(3)如圖3,圓錐的母線長為4cm,圓錐的側(cè)面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
精英家教網(wǎng)
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,正四棱柱的底面邊長為5cm,側(cè)棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=
43
cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省無錫市九年級12月質(zhì)量監(jiān)測數(shù)學試卷(解析版) 題型:解答題

李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;

(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A;

(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm..

 

查看答案和解析>>

同步練習冊答案