【題目】某校開(kāi)展校園“美德少年”評(píng)選活動(dòng),共有“助人為樂(lè)”,“自強(qiáng)自立”、“孝老愛(ài)親”,“誠(chéng)實(shí)守信”四種類(lèi)別,每位同學(xué)只能參評(píng)其中一類(lèi),評(píng)選后,把最終入選的20位校園“美德少年”分類(lèi)統(tǒng)計(jì),制作了如下統(tǒng)計(jì)表,后來(lái)發(fā)現(xiàn),統(tǒng)計(jì)表中前兩行的數(shù)據(jù)都是正確的,后兩行的數(shù)據(jù)中有一個(gè)是錯(cuò)誤的.

類(lèi)別

頻數(shù)

頻率

助人為樂(lè)美德少年

a

0.20

自強(qiáng)自立美德少年

3

b

孝老愛(ài)親美德少年

7

0.35

誠(chéng)實(shí)守信美德少年

6

0.32

根據(jù)以上信息,解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中的a= ,b ;
(2)統(tǒng)計(jì)表后兩行錯(cuò)誤的數(shù)據(jù)是 ,該數(shù)據(jù)的正確值是 ;
(3)校園小記者決定從A,B,C三位“自強(qiáng)自立美德少年”中隨機(jī)采訪兩位,用畫(huà)樹(shù)狀圖或列表的方法,求A,B都被采訪到的概率

【答案】
(1)4;0.15 
(2)0.32;0.30 
(3)

列表得:

A

B

C

A

AB

AC

B

BA

BC

C

CA

CB

∵共有6種等可能的結(jié)果,A、B都被選中的情況有2種,

∴P(A,B都被采訪到)==


【解析】(1)根據(jù)頻率=直接求得a、b的值即可;由題意得:a=20×0.20=4,b=3÷20=0.15;
(2)用頻數(shù)除以樣本總數(shù)看是否等于已知的頻率即可;∵6÷20=0.3≠0.32,∴最后一行數(shù)據(jù)錯(cuò)誤,正確的值為0.30;
(3)列表將所有等可能的結(jié)果列舉出來(lái),利用概率公式求解即可.
【考點(diǎn)精析】本題主要考查了列表法與樹(shù)狀圖法的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知(b、c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),點(diǎn)C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若拋物線經(jīng)過(guò)A、B兩點(diǎn),求拋物線的解析式.
(2)平移1中的拋物線,使頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離為時(shí),試證明:平移后的拋物線與直線AC交于x軸上的同一點(diǎn).
(3)在2的情況下,若沿AC方向任意滑動(dòng)時(shí),設(shè)拋物線與直線AC的另一交點(diǎn)為Q,取BC的中點(diǎn)N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是邊BC的中點(diǎn),一個(gè)圓過(guò)點(diǎn)A,交邊AB于點(diǎn)E,且與BC相切于點(diǎn)D,則該圓的圓心是( 。

A.線段AE的中垂線與線段AC的中垂線的交點(diǎn)
B.線段AB的中垂線與線段AC的中垂線的交點(diǎn)
C.線段AE的中垂線與線段BC的中垂線的交點(diǎn)
D.線段AB的中垂線與線段BC的中垂線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD內(nèi)接于⊙O,∠ADC=90°,∠DCB<90°,對(duì)角線AC平分∠DCB,延長(zhǎng)DA,CB相交于點(diǎn)E.
(1)如圖1,EB=AD,求證:△ABE是等腰直角三角形;

(2)如圖2,連接OE,過(guò)點(diǎn)E作直線EF,使得∠OEF=30°,當(dāng)∠ACE≥30°時(shí),判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為開(kāi)展“爭(zhēng)當(dāng)書(shū)香少年”活動(dòng),小石對(duì)本校部分同學(xué)進(jìn)行“最喜歡的圖書(shū)類(lèi)別”的問(wèn)卷調(diào)查,結(jié)果統(tǒng)計(jì)后,繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)此次被調(diào)查的學(xué)生共 
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類(lèi)部分所對(duì)應(yīng)的圓心角為
(4)若該校有1200名學(xué)生,估計(jì)全校最喜歡“文史類(lèi)”圖書(shū)的學(xué)生有

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A是∠MON邊OM上一點(diǎn),AE∥ON.
(1)在圖中作∠MON的角平分線OB,交AE于點(diǎn)B;(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)在(1)中,過(guò)點(diǎn)A畫(huà)OB的垂線,垂足為點(diǎn)D,交ON于點(diǎn)C,連接CB,將圖形補(bǔ)充完整,并證明四邊形OABC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),CD平分,CE平分,CD=CE.

(1)求證:

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB,用尺規(guī)作∠ABC=90°,作法如下:

小明的作法:(1)分別以A、B為圓心AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;(2)以P為圓心,AB長(zhǎng)為半徑畫(huà)弧交AP的延長(zhǎng)線于C;連接AC,則∠ABC=90°

(1)請(qǐng)證明∠ABC=90°;

(2)請(qǐng)你用不同的方法,用尺規(guī)作∠ABC=90°.

(要求:保留作圖痕跡,不寫(xiě)作法,并用2B鉛筆把作圖痕跡描粗)

查看答案和解析>>

同步練習(xí)冊(cè)答案