【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是( )
A.a>0 B.3是方程ax+bx+c=0的一個(gè)根
C.a+b+c=0 D.當(dāng)x<1時(shí),y隨x的增大而減小
【答案】B.
【解析】
試題分析:根據(jù)拋物線的開口方向可得a<0,根據(jù)拋物線對稱軸可得方程ax2+bx+c=0的根為x=-1,x=3;根據(jù)圖象可得x=1時(shí),y>0;根據(jù)拋物線可直接得到x<1時(shí),y隨x的增大而增大.
A、因?yàn)閽佄锞開口向下,因此a<0,故此選項(xiàng)錯(cuò)誤;
B、根據(jù)對稱軸為x=1,一個(gè)交點(diǎn)坐標(biāo)為(-1,0)可得另一個(gè)與x軸的交點(diǎn)坐標(biāo)為(3,0)因此3是方程ax2+bx+c=0的一個(gè)根,故此選項(xiàng)正確;
C、把x=1代入二次函數(shù)y=ax2+bx+c(a≠0)中得:y=a+b+c,由圖象可得,y>0,故此選項(xiàng)錯(cuò)誤;
D、當(dāng)x<1時(shí),y隨x的增大而增大,故此選項(xiàng)錯(cuò)誤;
故選:B.
考點(diǎn): 1.二次函數(shù)圖象與系數(shù)的關(guān)系;2.二次函數(shù)的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+k﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為世界文化遺產(chǎn)的長城,其總長大約為6700000m.數(shù)據(jù)6700000用科學(xué)記數(shù)法表( )
A. 6.7×106 B. 67×105 C. 0.67×107D. 6.7×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是邊BC上一點(diǎn),AP與BD交于點(diǎn)M,DP與AC交于點(diǎn)N.
①若點(diǎn)P為BC的中點(diǎn),則AM:PM=2:1;
②若點(diǎn)P為BC的中點(diǎn),則四邊形OMPN的面積是8;
③若點(diǎn)P為BC的中點(diǎn),則圖中陰影部分的總面積為28;
④若點(diǎn)P在BC的運(yùn)動(dòng),則圖中陰影部分的總面積不變.
其中正確的是_____________.(填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(m+3)x2﹣3m﹣1=0是一元二次方程,則m的取值范圍是( )
A.m≠0
B.m≠﹣3
C.m≠3
D.m≠x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,△ADE經(jīng)旋轉(zhuǎn)后與△ABF重合.
(1)旋轉(zhuǎn)中心是 ;旋轉(zhuǎn)角是 度; 如果連接EF,那么△AEF是 三角形.
(2)用上述思想或其他方法證明:如圖2,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上,且∠EAF=45°.
求證:EF=BE+DF.
(3)若DF=4,EF=10,求四邊形AECD的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com