【題目】如圖,點P是等腰Rt△ABC外一點,把線段BP繞點B順時針旋轉(zhuǎn)90°得到線段BP',已知∠AP'B=135°,P'A:P'C=1:3,則P'A:PB=_____.
【答案】
【解析】
連接AP和PP′,證明△ABP≌△CBP′,設(shè)P′A=x,則AP=3x,表示出BP,即可求出.
解:如圖,連接AP和PP′,
∵BP繞點B順時針旋轉(zhuǎn)90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:3,
∴AP=3P′A,
∵△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′=PB,
∵∠AP′B=135°,
∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
設(shè)P′A=x,則AP=3x,
根據(jù)勾股定理,PP′===,
∴PP′=PB=,
解得PB=2x,
∴P′A:PB=x:2x=1:2,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1.在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m寬的空地,其它三側(cè)內(nèi)墻各保留1m寬的通道.當矩形溫室的長與寬各為多少時,蔬菜種植區(qū)域的面積是288m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知關(guān)于x的函數(shù)y=k(x﹣1)和y=(k≠0),它們在同一坐標系內(nèi)的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:
購進數(shù)量(件) | 購進所需費用 (元) | ||
A | B | ||
第一次 | 20 | 50 | 4100 |
第二次 | 30 | 40 | 3700 |
(1)求、兩種商品每件的進價分別是多少元?
(2)商場決定商品以每件50元出售,商品以每件元出售.為滿足市場需求,需購進、兩種商品共件,且商品的數(shù)量不少于商品數(shù)量的倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標原點,與x軸交于點A(﹣4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點P,滿足S△AOP=8,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于A、B兩點,點A的坐標為(0,4),M是圓上一點,∠BMO=120°,則⊙C的半徑為____,圓心C的坐標為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點O.將∠COB繞點O順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α<90°),角的兩邊分別與BC,AB交于點M,N,連接DM,CN,MN,下列四個結(jié)論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).
(1)以O點為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點的對應(yīng)點B′的坐標是 ;C點的對應(yīng)點C′的坐標是 ;
(3)在BC上有一點P(x,y),按(1)的方式得到的對應(yīng)點P′的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com