(本題滿分12分)
如圖所示,在平面直角坐標(biāo)系中,頂點(diǎn)為(,)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)), 已知點(diǎn)坐標(biāo)為(,).
(1)求此拋物線的解析式;
(2)過點(diǎn)作線段的垂線交拋物線于點(diǎn),
如果以點(diǎn)為圓心的圓與直線相切,請判斷拋物
線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;
(3)已知點(diǎn)是拋物線上的一個(gè)動點(diǎn),且位于,
兩點(diǎn)之間,問:當(dāng)點(diǎn)運(yùn)動到什么位置時(shí),的
面積最大?并求出此時(shí)點(diǎn)的坐標(biāo)和的最大面積.
解:(1)設(shè)拋物線為.……………1分
∵拋物線經(jīng)過點(diǎn)(0,3),∴.∴.……………2分
∴拋物線為. ……………………………3分
(2) 答:與⊙相交 …………………………………………………………………4分
證明:當(dāng)時(shí),,.
∴為(2,0),為(6,0).∴.…………………5分
設(shè)⊙與相切于點(diǎn),連接,則.
∵,∴.
又∵,∴.∴∽.……6分
∴.∴.∴.…………………………7分
∵拋物線的對稱軸為,∴點(diǎn)到的距離為2.
∴拋物線的對稱軸與⊙相交. ……………………………………………8分
(3) 解:如圖,過點(diǎn)作平行于軸的直線交于點(diǎn)。
可求出的解析式為.…………………………………………9分
設(shè)點(diǎn)的坐標(biāo)為(,),則點(diǎn)的坐標(biāo)為(,).
∴.……………10分
∵,
∴當(dāng)時(shí),的面積最大為. ……………11分
此時(shí),點(diǎn)的坐標(biāo)為(3,). ………12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動;同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長;
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在邊長為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)A、B[來分別在軸和軸上,∠ABO=.
1.(1)求此二次函數(shù)的解析式;(4分)
2.
|
點(diǎn)在上述函數(shù)圖像上,當(dāng)與相似時(shí),求點(diǎn)的坐標(biāo).(8分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。
⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;
⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動;同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長;
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com