【題目】某小區(qū)開展“節(jié)約用水,從我做起”活動,下表是從該小區(qū)抽取的10個家庭,8月份比7月份節(jié)約用水情況統(tǒng)計:

節(jié)水量(m3

0.2

0.3

0.4

0.5

家庭數(shù)(個)

1

2

3

4

那么這10個家庭8月份比7月份的節(jié)水量的平均數(shù)是(
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3

【答案】B
【解析】解:這10個家庭8月份比7月份的節(jié)水量的平均數(shù)是 , 故選B
【考點精析】利用統(tǒng)計表對題目進行判斷即可得到答案,需要熟知制作統(tǒng)計表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫欄目、各項目名稱及數(shù)據(jù).(4)計算總計和合計并填入表中,一般總計放在橫欄最左格,合計放在豎欄最上格.(5)寫好表格名稱并標(biāo)明制表時間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為( )

A.
B.4
C.
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心, AC長為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點;
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車從A開往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是(
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.

(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建書香校園,切實引導(dǎo)學(xué)生多讀書,讀好書.某中學(xué)開展了“好書伴我成長”的讀書節(jié)活動,為了了解本校學(xué)生每周課外閱讀時間,隨機抽取部分學(xué)生進行問卷調(diào)查,將課外閱讀時間分為A、B、C、D四組,并利用臭氧所得的數(shù)據(jù)繪制了如下統(tǒng)計圖.

組別

課外閱讀t(單位:時)

A

X<2

B

2≤x<3

C

3≤x<4

D

x≥4

請根據(jù)圖中提供的信息,解答下列問題:
(1)一共調(diào)查了名學(xué)生;
(2)扇形統(tǒng)計圖中A組的圓心角度數(shù)
(3)直接補全條形統(tǒng)計圖
(4)若該校有2400名學(xué)生,根據(jù)你所調(diào)查的結(jié)果,估計每周課外閱讀時間不足3小時的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小賢為了體驗四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,觀察所得四邊形的變化,下列判斷錯誤的是(
A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形對角線,請在大長方形中完成下列畫圖,要求:(1)僅用無刻度直尺;(2)保留必要的畫圖痕跡.

(1)在圖(1)中畫一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖(2)中畫出線段AB的垂直平分線,并簡要說明畫圖的方法(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的弦,AB=8,OC⊥AB于點D,交⊙O于點C,且CD=l,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案