【題目】下列給出的方程中,屬于一元二次方程的是( )
A. x(x﹣1)=6B. x2+=0C. (x﹣3)(x﹣2)=x2D. ax2+bx+c=0
科目:初中數(shù)學 來源: 題型:
【題目】 已知:點A(2016,0)、B(0,2018),以AB為斜邊在直線AB下方作等腰直角△ABC,則點C的坐標為( 。
A. (2,2 )B. (2,﹣2 )C. (﹣1,1 )D. (﹣1,﹣1 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是正方形,∠PAQ=45°,將∠PAQ繞著正方形的頂點A旋轉,使它與正方形ABCD的兩個外角∠EBC和∠FDC的平分線分別交于點M和N,連接MN.
(1)求證:△ABM∽△NDA;
(2)連接BD,當∠BAM的度數(shù)為多少時,四邊形BMND為矩形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點.
(1)求出反比例函數(shù)的解析式及點 B 的坐標;
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點 P 是第四象限內反比例函數(shù)的圖象上一點,若△POB 的面積為 1,請直接寫出點 P的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】結合西昌市創(chuàng)建文明城市要求,某小區(qū)業(yè)主委員會決定把一塊長80m,寬60m的矩形空地建成花園小廣場,設計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的直角三角形),空白區(qū)域為活動區(qū),且四周出口寬度一樣,其寬度不小于36m,不大于44m,預計活動區(qū)造價60元/m2,綠化區(qū)造價50元/m2,設綠化區(qū)域較長直角邊為xm.
(1)用含x的代數(shù)式表示出口的寬度;
(2)求工程總造價y與x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)如果業(yè)主委員會投資28.4萬元,能否完成全部工程?若能,請寫出x為整數(shù)的所有工程方案;若不能,請說明理由.
(4)業(yè)主委員會決定在(3)設計的方案中,按最省錢的一種方案,先對四個綠化區(qū)域進行綠化,在實際施工中,每天比原計劃多綠化11m2,結果提前4天完成四個區(qū)域的綠化任務,問原計劃每天綠化多少m2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是的直徑,把為的直角三角板的一條直角邊放在直線上,斜邊與交于點,點與點重合.將三角板沿方向平移,使得點與點重合為止.設,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左右兩側是豎直的墻,一架梯子AC斜靠在右墻,測得梯子頂端距離地面AB=2米,梯子與地面夾角α的正弦值sinα=0.8.梯子底端位置不動,將梯子斜靠在左墻時,頂端距離地面2.4米,則小巷的寬度為( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,延長BC至點D,使得DC=BC,直線DA與⊙O的另一個交點為E,連結AC,CE.
(1)求證:CD=CE;
(2)若AC=2,∠E=30°,求陰影部分(弓形)面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,連結EB,交OD于點F.
(1)求證:OD⊥BE.
(2)若DE=,AB=6,求AE的長.
(3)若△CDE的面積是△OBF面積的,求線段BC與AC長度之間的等量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com