直線與x軸、y軸的交點分別是A,B,且S△AOB≤1,則k的取值范圍是(     ).

 (A) k≥-1          (B) k≤1         (C) -1≤k≤1       (D)k≥1或k≤-1

 

【答案】

C

【解析】

試題分析:先求出直線與x軸y軸的交點分別為A、B,得到OA,OB的長,利用三角形的面積公式得到不等式,對照選項進行判斷.

令x=0,則y=k,得B(0,k);

令y=0,則x=-2k,得A(-2k,0),

所以-1≤k≤1.

故選C.

考點:此題主要考查了一次函數(shù)的圖象性質(zhì)

點評:會求一次函數(shù)與兩坐標(biāo)軸的交點坐標(biāo),掌握用坐標(biāo)表示線段;記住三角形的面積公式是解答本題的關(guān)鍵.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-x+20與x軸、y軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動.動直線EF從x軸開始以每秒1個長度單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于E、F點.連接FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)當(dāng)t=1秒時,求梯形OPFE的面積.
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(t1≠t2),所對應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,以點M(-1,0)為圓心的圓與y軸,x軸分別交于點A,B,C,D,直線y=-
3
3
x-
5
3
3
與⊙M相切于點H,交x軸于點E,交y軸于點F.
(1)請直接寫出OE,⊙M的半徑r,CH的長;
(2)如圖2所示,弦HQ交x軸于點P,且DP:PH=3:2,求cos∠QHC的值;
(3)如圖3所示,點K為線段EC上一動點(不與E,C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN•MK=a,如果存在,請求出a的值;如果不存在,請說明理由.
精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求點C,D的坐標(biāo);
(2)若一次函數(shù)y=kx-2(k≠0)的圖象過C點,求k的值.
(3)若y=kx-2的直線與x軸、y軸分別交于M,N兩點,且△OMN的面積等于2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉(zhuǎn)90°得到直線A1B1
請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關(guān)系為
 
(填“平行”或“垂直”);
(2)設(shè)(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系中,直線數(shù)學(xué)公式與x軸、y軸分別交于A、B兩點,把直線數(shù)學(xué)公式沿過點A的直線翻折,使B與x軸上的點C重合,折痕與y軸交于點D,則直線CD的解析式為________.

查看答案和解析>>

同步練習(xí)冊答案