【題目】已知方程組的解滿足為非正數(shù),為負(fù)數(shù).

1)求的取值范圍;

2)化簡(jiǎn):;

3)在的取值范圍內(nèi),當(dāng)為何整數(shù)時(shí)不等式的解集為

【答案】1-2m3;(21-2m;(3-1

【解析】

1)先求出方程組的解,根據(jù)x為非正數(shù),y為負(fù)數(shù),組成不等式組,解不等式組,即可解答.
2)根據(jù)m的取值范圍,絕對(duì)值的性質(zhì)化簡(jiǎn),即可解答.

3)由不等式的性質(zhì)求出m的范圍,結(jié)合(1)中所求范圍可得答案.

1)解原方程組得:


x≤0,y0
,
解得-2m≤3;
2|m-3|-|m+2|=3-m-m-2=1-2m;
3)解不等式2mx+x2m+1得(2m+1x2m+1
x1,

2m+10,
m-,
-2m-,
m=-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過(guò)兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C'

1)畫(huà)出△A'B'C'

2)若連接AA′、BB′,則這兩條線段之間的關(guān)系是   

3)試在直線l上畫(huà)出格點(diǎn)P,使得由點(diǎn)A'B'、C'、P四點(diǎn)圍成的四邊形的面積為9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于O點(diǎn),OMAB.

1)若∠1=2,求∠NOD

2)若∠1=BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F、G分別在菱形ABCD的邊AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知EFG的面積等于6,則菱形ABCD的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)DAF的延長(zhǎng)線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,于點(diǎn)

1)如圖1,若的角平分線交于點(diǎn),,,求的度數(shù);

2)如圖2,點(diǎn)分別在線段上,將折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,折痕分別為,且點(diǎn),點(diǎn)均在直線上,若,試猜想之間的數(shù)量關(guān)系,并加以證明;

3)在(2)小題的條件下,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)角度),記旋轉(zhuǎn)中的(如圖3),在旋轉(zhuǎn)過(guò)程中,直線與直線交于點(diǎn),直線與直線交于點(diǎn),若,是否存在這樣的兩點(diǎn),使為直角三角形?若存在,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于點(diǎn)DDEAD且與AC的延長(zhǎng)線交于點(diǎn)E.

(1)求證:DCDE;

(2)tanCAB,AB=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ACB90°,AD平分∠BACBCDDEABE,BEAE+AF,連結(jié)BF,判斷△BDF的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案